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Summary

Speech is fundamental to humanity as our primary means of communication and expression. Speech
sounds are produced by a vibration of our vocal chords or a constriction in the vocal tract, and are
shaped by resonances in the vocal cavities, and expelled through our nose and mouth. By rapidly
changing the configuration of our vocal organs, we can mold such sounds into language, to be trans-
mitted through the air, and heard by human ears.

When this sound is produced by a vibration of the vocal chords, its waveform becomes periodic,
and its spectrum harmonic. We perceive such a “voiced” sound as having a pitch that corresponds to
the frequency of the vocal chord vibration and the harmonic spacing of the spectrum. This quantity
can be estimated by computer algorithms, and is then typically referred to as a fundamental frequency.

Fundamental frequency estimation algorithms are a key ingredient for various speech analysis tasks
such as speech recognition, speaker identification, and speech compression. This dissertation is about
the construction of such algorithms, how to evaluate their performance, and a large comparison of
common implementations.

The first major contribution of this dissertation is a new algorithm for estimating the fundamental
frequency of speech. The algorithm combines features from multiple domains into a probabilistic
pitch confidence measure that evaluates the probability of a short audio segment having a certain
fundamental frequency. The measure is unusual in that it is a true probability that can both accept
and reject each candidate frequency instead of merely finding the most probable one. Its estimates are
thus more sparse than similar algorithms’, but also more robust. These characteristics are validated
in a large evaluation with speech and noise recordings and in comparison with a number of notable
reference algorithms.

However, the evaluation brought to light an idiosyncrasy of speech analysis, that the only truth
of speech properties is often human perception. These being unavailable to computer programs,
evaluations of their accuracy must rely on some other form of truth, which is necessarily flawed. To
investigate this, we conducted a study of numerous speech databases and their fundamental frequency
ground truths, and found them unsatisfyingly variant and inconsistent.

Based on this notion, the second major contribution is then a new ground truth measure for
fundamental frequency, constructed from the consensus of a number of existing fundamental frequency
estimation algorithms. In contrast to existing truths, ours does not rely on the estimates and biases
of a single algorithm, nor on laryngograph recordings, as these were found to be problematic for
evaluating fundamental frequency algorithms. Our ground truth was validated to be very similar
to existing ground truths, but more suitable to the task of evaluating the accuracy of algorithms in
difficult edge cases.

Thirdly, a comparison study of unprecedented depth was conducted of not only fundamental
frequency estimation algorithms, but also speech and noise corpora, as well as ground truths. In
preparation for this comparison study, a uniquely large and reproducible dataset of algorithms, signals,
truths, and performance measures was constructed, which can be of independent value to future
researchers and is available on this dissertation’s companion website.

The comparison itself investigated the characteristics of 25 fundamental frequency estimation al-
gorithms from the last 30 years of digital signal processing history in unique detail. This comparison
revealed a number of previously unknown properties of all included algorithms, particularly in their
biases towards certain speech corpora and performance measures.

In summary, this dissertation examined the algorithmic estimation of the fundamental frequency
of speech. Analogous to human perception, pitch estimates are often inherently ambiguous and since
therefore a definition of “true” pitch does not exist, a consensus approach was proposed. Consequently,
this topic of research has a rich history, and its algorithms are now as intricate and interesting as speech
itself.



Zusammenfassung

Sprache ist die Grundlage aller zwischenmenschlicher Kommunikation und Ausdrucks. Wir erzeugen
Sprachlaute durch Vibration unserer Stimmbénder oder eine Verengung des Luftstroms im Rachen-
raum, welche im Vokaltrakt zur Resonanz gebracht und durch Mund und Nase abstrahlt werden.
Indem wir unsere Sprachorgane schnell und prézise bewegen, erzeugen wir so Sprache, die durch die
Luft in die Ohren anderer Menschen transportiert wird.

Wenn diese Laute durch eine Vibration der Stimmbénder erzeugt werden, wird das Signal peri-
odisch, und sein Spektrum harmonisch. Einen solchen ,stimmhaften“ Laut empfinden wir mit einer
spezifischen Tonhdohe, welche der Frequenz der Stimmbandschwingung und dem Abstand der Harmoni-
schen entspricht. Diese Frequenz lasst sich auch algorithmisch mit Computerprogrammen bestimmen,
und wird dann Grundfrequenz genannt.

Grundfrequenzschétzungs-Algorithmen sind ein wichtiger Bestandteil vieler Sprachanalyse-Werk-
zeuge, wie der Spracherkennung, der Sprechererkennung, oder der Sprachkompression. Diese Disser-
tation handelt von eben solchen Algorithmen, Auswertungsmethoden ihrer Genauigkeit, und einer
Vergleichsstudie verschiedener Implementierungen.

Der erste wichtige Beitrag dieser Dissertation ist ein neuer Grundfrequenzschitzungs-Algorithms.
Er kombiniert Merkmale verschiedener Signaldarstellungen in einer Wahrscheinlichkeit, ob ein kurzer
Signalausschnitt an einer bestimmten Frequenz stimmhaft ist. Dieses Mafl ist ungewohnlich, da
es als echte Wahrscheinlichkeit die Stimmhaftigkeit sowohl bestédtigen als auch ablehnen kann,
anstatt lediglich die wahrscheinlichste Frequenz anzugeben. Unsere Frequenz-Schétzungen sind de-
mentsprechend konservativer als die anderer Algorithmen, aber auch deutlich robuster. Diese Eigen-
schaften wurden in einer groflen Studie mit Sprach- und Stoérgerduschaufnahmen validiert, und mit
bekannten Referenzalgorithmen verglichen.

Die Studie legte allerdings ein Grundproblem der Sprachanalyse offen: dass die einzige Wahrheit
der Sprache nur in der Wahrnehmung der Menschen zu finden ist, und diese leider fiir Computer-
programme nicht verfiighar ist. Statt dessen miissen Vergleiche zwangslaufig auf eine andere Art der
Wahrheit ausweichen, und deren Kompromisse in Kauf nehmen. Um dies zu untersuchen, haben wir
eine Vergleichsstudie verschiedener Sprachdatenbanken und deren Grundfrequenz-Wahrheiten durchge-
fiihrt, die relevante Inkonsistenzen und Unterschiede zu Tage brachte.

Der zweite wichtige Beitrag dieser Dissertation ist eine neue Grundfrequenz-Wahrheit, die wir
aus einer mehrheits-Wahl verschiedener Grundfrequenzschitzungs-Algorithmen erzeugten. Im Gegen-
satz zu bestehenden Wahrheiten muss unsere Wahrheit weder auf die Schétzungen und Eigen-
heiten einzelner Algorithmen zuriickgreifen, noch auch auf Laryngograph-Messungen, da diese sich
als problematisch fiir die Evaluation von Grunfrequenzschéitzungs-Algorithmen herausstellten. Un-
sere mehrheits-Wahrheit ist bestehenden Wahrheiten sehr dhnlich, allerdings fiir die Bewertung von
Grundfrequenzschétzungs-Algorithmen besonders in schwierigen Randbereichen besser geeignet.

Als drittes bereitet diese Dissertation eine einmalig grofie Vergleichsstudie vor, von Grundfrequenz-
schatzungs-Algorithmen, aber auch von Sprach- und Storgerduschdatenbanken und Wahrheiten. In
der Vorbereitung dieser Studie entstand eine einzigartig grofle Datenbank von Algorithmen, Signalen,
Wahrheiten und Bewertungsmaflen, die auch jenseits des eigentlichen Vergleichs fiir zukiinftige Wis-
senschaftler auf unserer Webseite zur Verfiigung gestellt wird.

Die eigentliche Vergleichsstudie umspannt 25 Grundfrequenzschéatzungs-Algorithmen der letzten
dreiflig Jahre in nie dagewesener Detailtiefe. Dieser grofle Vergleich zeigt bei jedem der Algorithmen
neue Figenschaften, und ganz besonders neue Biases fiir bestimmte Signalzustdnde, Sprachdaten-
banken, und Bewertungsmafe.

Zusammenfassend untersucht diese Dissertation die algorithmische Schéatzung der Grundfrequenz
von Sprache. Und wie in unserer menschlichen Wahrnehmung, so ist auch die Schétzungen oft fun-
damental mehrdeutig. Da damit keine eindeutige ,,Wahrheit® existieren kann, wurde eine mehrheits-



Entscheidung vorgestellt. Dennoch hat dieses Fachgebiet eine lange Geschichte, und seine Algorithmen
sind inzwischen genauso spannend und komplex wie die Sprache selbst.
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Part 1

Introduction

Where we introduce the topic of speech analysis in general,
and fundamental frequency estimation in particular, and define
the scope of this dissertation.

Chapter 1 introduces speech analysis as a general topic,
and the fundamental frequency of speech as one of its foundations,
along with the major concepts necessary for understanding their
purpose and applications.

Chapter 2 goes into deeper detail on how voiced speech
is produced, and how it gives rise to a perception of a pitch.
Depending on these points of view, different definitions for the
pitch of speech are brought forth, which form the various bases
for the fundamental frequency estimation algorithms and ground
truths in the remainder of this dissertation.

Chapter 3 reins in the scope of this dissertation from
the infinite varieties and intricacies of speech in general to a
more compact subset of utterances available in published speech
databases and to algorithmic evaluation.

The conclusion of the introduction in Chapter 4 ex-

plicitly raises the main questions this dissertation is addressing,
and summarizes its contributions.

14
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If there is one capability that is uniquely human, it is that of language. Language allows humanity
to cooperate at otherwise impossible scales, to communicate knowledge over generations and across
continents. It is the foundation of all human achievement. As such, it is also of intrinsic interest to
scientists, both to better understand ourselves, and to enable machines to understand us.

If language is the medium of information, then speech and writing are its encoding for transmission.
From just a few weeks after birth, humans long to communicate by making sounds [171, ch. 5]. First,
to connect with their parents and siblings, then to communicate emotions and desires, and later to
learn and teach others about the world. As young humans mature, so does their command of language,
speech, and writing. Yet for most people, speech remains the richest encoding possible, with writing
only a pale imitation, and seemingly lacking in nuance and expression.

Speech is produced from air streaming out of the lungs, which is disturbed by a constriction in
the vocal cavities, or by a periodic opening and closing of the vocal chords. The ensuing sound waves
resonate in the vocal cavities, and are radiated through the nose and mouth. Each of these parts, the
flow rate of the air, the place and type of constriction, the frequency of the vocal chord vibration, the
shape and resonant frequencies of the cavities, and the shape of the orifice, can be modulated several
times per second to produce the varied sounds of speech [131, 35, 90].

On the perception side, an equally complex array of auditory transducers and neural processing
stages translate the resulting audio signal back into language. There is some evidence that we perceive
speech differently than other sounds, with our perception guided by an intimate knowledge of speech
production [98]. Technological analysis of speech can make use of such knowledge as well, and model
speech not just as an arbitrary acoustic phenomenon, but as a physiologically constrained process
with a limited number of variables.

One of these variables, and the topic of this dissertation, is the fundamental frequency of voiced
speech, where a periodic vibration of the vocal chords gives rise to a harmonic and periodic signal that
we perceive as having a single pitch. While the pitch of voiced speech does not carry much vocabulary
information in western languages, it is an important side-channel of prosodic information, such as for
communicating emotional state, sentence boundaries, and emphasis [44].

Beyond the linguistic meaning of pitch, however, it gives voiced speech a particular comb-like
spectral shape that is recognizable even when severely distorted by background noise [90, ch. 4.2].
This shape aids humans in auditory scene analysis, and machines in a number of different applications,
such as voice activity detection, speaker identification, speech recognition, separation, enhancement,
compression, and modification [21].

The analysis of speech and its pitch are thus a prerequisite for using speech to interact with
machines. If language is what defines humanity, it is machines that enable us to step beyond the
limitations of our bodies: Machines enable humans to communicate instantly across large distances,
to manipulate our surroundings beyond our own physical strength, and to process and analyze data too
complex for single human brains. But robust use of synthetic speech generation and speech recognition
has long been unavailable for machine interaction.

Thus, voiced speech and its pitch are the essence of human phonation, and its analysis is at a unique
crossroads between the technological and the humane. How to bridge this gap between algorithms
and perception is what makes speech fascinating, and is the motivation for this dissertation.

The remainder of the Introduction is structured as follows: Chapter 1 briefly introduces the history
and current applications of scientific speech analysis. Chapter 2 introduces the required nomenclature
of speech production and perception, as well as a glimpse into the worlds of psychoacoustics and
audiology, each with their own definitions of pitch. After that, Chapter 3 defines the scope and
properties of the specific kinds of speech signals to be discussed in this dissertation. Finally, the
conclusion in Chapter 4 will end the introduction with a few notes on applications of speech analysis
and a juxtaposition of the technological fundamental frequency and perceptual pitch.



Chapter 1

Speech Analysis and Pitch Analysis

For millennia, humans have successfully communicated without a concrete theory of how speech signals
work. The notion of a signal as a modulated sound wave traveling through the air is claimed to originate
from the ancient Greeks, with Aristotle explaining sound as:

Sound takes place when bodies strike the air, [...] by its being moved in a corresponding
manner; the air being contracted and expanded and overtaken, and again struck by the
impulses of the breath and the strings, for when air falls upon and strikes the air which is
next to it, the air is carried forward with an impetus, and that which is contiguous to the
first is carried onward; so that the same voice spreads every way as far as the motion of
the air takes place.

—Aristotle (384-322 BC), Treatise on Sound and Hearing

Yet it would take two millennia until the invention of the microphone brought a new, electric
representation of a signal, not as intangible vibrations of the air, but as measurable voltages on a
wire [62]. And what can be measured, can be analyzed. Electronic circuits were quickly invented to
modify sound recordings, and transmit them over long distances. The invention of magnetic tape and
vinyl records could make electronic recordings permanent, and replay them (almost) infinitely without
any degradation in quality [48].

Only a few years later, during the second half of the twentieth century, did the invention of digital
computers again reinterpret these voltages as digital series of numbers, and started the field of digital
signal processing as it is known today [68]. Suddenly, sound recordings were no longer bound to their
electric origin, but a subject of intense mathematical study and manipulation.

The first, and most pressing application of this new understanding, was to increase the efficiency
of transmitting human speech over wires and radio. As early as 1850, undersea cables were used to
transmit telegraph messages across first the Rhine river, then the English Channel, and in 1858, the
Atlantic Ocean. However, text telegraphs are a poor substitute for human speech, and in 1927, a
transatlantic commercial radio telephone service opened, costing an astounding £9 per three minutes
(equivalent to $550 in 2010). In 1956, this was replaced with the first transatlantic undersea cable,
capable of 36 simultaneous telephone conversations at a time. This cable carried more phone calls in
its first few days of service than the previous radio telephone had had in a year [62, 55]. Improving the
throughput of such long-distance telephone wires, and reducing the number of cables in the budding
national telephone networks were the first challenges for digital speech processing in the advent of the
information age.

According to Speech Analysis and Synthesis and Perception by Flanagan from 1965 [35], the
telephone spread quickly, with 150 million telephones in use by 1965. But human speech signals on
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a telephone circuit required a communication channel of 3 kHz, or 30 kBit/s, whereas the linguistic
content was thought to be no more than 50 bit/s [35, ch. 1]. Thus a massive reduction in bandwidth
was assumed possible, so to ease the burden on connecting all of humanity through telephones.

Farly speech compression techniques were based on the idea that speech recordings could be
disentangled into an excitation signal analogous to the parameters of the human glottis, and filter
parameters that could recreate the effect of the human vocal tract. Transmitting these parameters
instead of the entire waveform would save significant bandwidth at the cost of being engineered for
speech signals only.

On the receiving end, these parameters would be fed into a matching speech synthesizer, which
would recreate the original speech. At the time, these analysis-synthesis systems were still in their
infancy [118] and not yet in widespread use.

While these systems would remain somewhat of a curiosity for civilian use, the military realized
their potential early on as a means for encrypting signal transmissions digitally as early as 1943 [7].
In this use case, the purpose of the analysis-synthesis system was not to save bandwidth, but to use
the existing telephone bandwidth securely.

One of the defining parameters of these systems was the fundamental frequency of voiced sounds.
This was used either directly to characterize the excitation signal, or as an intermediary step for finding
spectral peaks and encoding prosodic information. In 1983, these developments were described in the
book Pitch Determination of Speech Signals [59] by Hess, where the author detailed the advances
in fundamental frequency estimation in terms of digital signal processing, as well as its analog pre-
history. The developments in digital pitch determination since then are investigated in great detail in
Chapter 11. Suffice it to say that approaches are as varied as speech itself, and provide a fascinating
cross-section of speech analysis as a whole.

By 1992, speech coding technologies had advanced far enough to be no longer of academic interest
only, but a reality in the design and implementation of the integrated services digital network (ISDN),
with its myriad civil and military applications. These applications and their challenges are described
in Digital Speech Processing, Speech Coding, Synthesis and Recognition by Ince in 1992 [63].

The digitization of speech also paved the way for speech analysis applications beyond the purposes
of human-to-human communication. Their use expanded significantly into interactions between hu-
mans and machines, in the form of speech recognition and speech synthesis. Similarly, the demands
on speech coding increased from mere transmission to providing increased security and reliability and
memory-efficient voice storage. These issues only grew in significance with the shared transmission
channel between voice and data that would be common for ISDN and beyond.

Ince illustrated applications of these technologies in a combat aircraft environment: voice recogni-
tion systems in the cockpit help control tactical systems, efficient voice coding and speech enhancement
systems are used for communicating between aircraft, and synthetic-speech aural warning systems
provide feedback from sensors. Speech-driven man-machine interactions proved preferable to visual
displays in this case, as they were found to be perceived independently from visual input or motoric
tasks. Indeed, these systems were deemed absolutely necessary for maintaining combat readiness in
the face of the enormity of data available in modern cockpits, a lesson that would take a few decades
to be incorporated into civilians’ lives as well.

Nowadays, these technologies have trickled down into smart phones, allowing for sending and re-
ceiving of text messages hands-free while driving a car, digital assistants for controlling media hubs,
automatic transcription and translation of online videos, and low-bandwidth digital voice transmis-
sions. In fact, today’s speech coding methods such as MELP [96] (300 bit/s) or Codec2 [133] (700 bit/s)
are approaching the bandwidth of 50 bit/s Flanagan predicted in 1965 as mentioned at the beginning
of this chapter.

Later publications on speech analysis added additional applications such as speaker recognition and
language recognition [43], computational auditory scene analysis [160], speech modification and music
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information retrieval [21], and deeper speech analysis such as linguistic analysis, voice transformation
and speech enhancement [6], which have not yet found their way into everyday life.

All of these technologies rely on models and parametrizations of speech signals to conduct their
higher-level analyses. It thus comes as no surprise that the estimation of these parameters is still an
active area of research as well. Fundamental frequency estimation, in particular, has seen constant
developments from the dawn of digital technologies until today.

Algorithms to estimate the fundamental frequency of speech have evolved with the technological
possibilities of their time, from the computationally constrained event detection systems of the 1960s
and 1970s, to short-time periodicity and harmonicity estimators in the 1980s and 1990s, to today’s
machine learning tools. Every step of their evolution enabled new capabilities, beginning with basic
accuracy for single recordings, to near-human levels of speaker-agnostic noise resistance in today’s
most powerful algorithms, such as the one introduced later in this dissertation.

These improvements in fundamental frequency estimation algorithms required a similar improve-
ment in evaluation methods and ground truths to validate their claims of accuracy. This has been
partly realized in ever larger speech databases with associated fundamental frequency ground truths
for evaluating algorithm accuracy.

Thus, there is still room for improvement in fundamental frequency estimation, as well as speech
analysis in general. Research has shown without a doubt that speech remains the most convenient
and most effective means of communication between humans [107]. The academic interest in speech
and its parameters has persisted, and will no doubt continue to do so for the foreseeable future, until
machines can truly understand us as well as we can each other.



Chapter 2

Speech Production, Perception, and
Nomenclature

Speech is humanity’s primary means of encoding language. It is produced by the human vocal organs,
transmitted through the air, and received by a human ear and auditory system. While other methods
of producing or consuming speech-like signals exist, these are mere facsimiles of human speech and must
adhere to the same rules to be considered speech. Thus, both the production and the consumption of
speech is a deeply human affair, and can only truly be interpreted by humans.

Yet, we build technological systems that aim to produce speech-like signals and consume human
speech, “just like humans”. For these applications, we need to understand the structure of speech
signals, both in their physical and technical specifications, and also in the meaning they encode for
humans. This work is primarily concerned with one important aspect of the former, the fundamen-
tal frequency of speech from a signal processing standpoint, in order to allow for a richer machine
interpretation of human speech.

To gain a technical understanding of speech and its pitch, we must understand how it is produced
and how it is perceived. Thus, the next sections examine speech production, its auditory perception,
and finally its signal properties. These sections only define terms with respect to speech analysis and
offer a brief venture into the worlds of linguistics, phonetics, audiology, and psychoacoustics where
necessary.

2.1 Speech Production

Speech is produced in the human vocal organs, a simplified drawing of which is shown in Figure 2.1.
Starting from the bottom to the top, the lungs supply the vocal tract with air and energy, which is
excited by a constriction of the airflow or a rhythmic opening and closing of vocal folds, and made to
resonate in the pharynx, nasal, and oral cavities, and exit through the nose and/or mouth.

The first obstacle for the lung’s airflow are the vocal folds, two membranes stretched across the
larynx. The vocal folds can be controlled both in the size of their opening and in their tension, all
of which interact in various ways with the air flow: if completely open, such as in breathing or with
certain consonants, they do not disturb the air flow at all and play no role in the resulting speech signal.
If partly closed, they vibrate in the airflow, and produce a voice. Depending on the size of the opening,
the tension of the vocal folds, and the air pressure from the lungs, this vibration might periodically
stop the airflow, or merely constrict it. This constitutes the difference between the various kinds of
voice, such as whispering, breathy voice, normal voice, or shouting voice. At the other extreme, the
vocal folds can close completely, which then produces glottal stop sounds such as a /g/ or /k/.

In the normal voice, the vocal folds open and close to produce a roughly triangular air flow over
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Figure 2.1: Drawing of the human vocal organs, as they pertain to speech production [35].

time, called a glottis pulse, with complete closures in between pulses [35]. The frequency and length of
these pulses can be controlled to produce a “buzzing” sound at various frequencies, with a harmonic
spectrum that diminishes at about 12 dB/octave [131, 59]. The precise shape of the glottis pulses
is part of the unique difference between different people’s voices and only partly controllable by the
speaker.

A periodic opening and closing of the vocal folds thus introduces a first definition of speech pitch.
From a speech production viewpoint, the pitch of voiced speech is the frequency of the glottis pulses.
These can be measured by a device called a laryngograph or electroglottograph, which estimates the
vocal fold contact area by measuring the electrical impedance across the larynx with two electrodes [59,
ch. 5.2.3]. These electrical measurements are easily disturbed by neck movements, however, and can
exhibit anomalies during phoneme transitions and mixed phonation such as /w/ or /z/, which are
produced both by vocal fold vibrations and an unvoiced constriction in the airflow [132].

Not all speech sounds originate in the vocal folds, however. Some sounds are produced in part or
entirely by turbulent air flow caused by constrictions in another part of the vocal tract. This includes
constrictions with the lips or tongue for consonants such as /f/ or /s/, but also sudden releases of air
pressure in the mouth, such as /p/ or /t/. These sounds have a non-harmonic spectrum that is much
broader than the spectrum of glottis pulses [59].

The glottis pulses or noisy excitations then pass through the various cavities of the vocal tract,
such as the larynx, pharynx, mouth, and nasal cavities. As these are volumes of varying size and
shape, they excite resonances, whose characteristic spectral peaks are called formants that transform
the “buzzing” or “whooshing” excitation to speech sounds [59, 6, 131]. Figure 2.2 shows an example
of how a vowel sound is produced by shaping the spectrum of a glottis-pulse train by vocal tract
formants.

During speech production, the resonances are varied by moving the tongue, lips, cheeks, jaw,
and larynx, and by opening or closing the velum to connect or disconnect the nasal cavity. Other
resonances are characteristic to each person, and cannot be varied voluntarily, such as the size and
shape of the larynx, pharynx, and nasal cavity [6].

Finally, the openings of the mouth and nose radiate the speech sounds into the environment, with
an additional modification of the sound depending on the mouth opening and head shape.

The resulting waveform for voiced sounds remains approximately periodic, with the same period
as the glottis pulses. A second definition of pitch is thus the periodicity of the speech signal. This is
different from the aforementioned laryngograph measurements in that the vocal tract resonances take
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Figure 2.2: Illustration of the creation of voiced speech: A series of glottis pulses with a roughly
12 dB/octave spectrum is filtered by the vocal tract with formants at 730 Hz, 1090 Hz, and 2440 Hz
(a male vowel /a/) to form a speech spectrum. Dashed line is the spectral envelope.

a short time to fully build up, which can obscure periodicity changes, particularly during onsets and
offsets. Additionally, mixed excitation with both glottis pulses and an unvoiced constriction markedly
reduces periodicity of voiced speech and can complicate its algorithmic estimation.

2.2 Speech Perception

Speech is produced and perceived by humans. Its function is to transmit information, and it is
specifically adapted to humans’ vocal organs and auditory system as speech is undoubtedly constrained
by the limitations of human perception. We cannot perceive what we cannot hear, and we are unlikely
to say anything that cannot be heard. Understanding the characteristics of human auditory perception
is thus important for understanding speech signals.

Speech signals enter our ears as sound waves: rapid oscillations in the ambient air pressure that
were produced by a human speaker (or a facsimile of one). These pressure waves are guided by the
external ear into the ear canal, where they excite the eardrum, a membrane that separates the ear
canal from the middle ear. This membrane converts the air’s vibrations into physical vibrations of the
ossicles, which are connected to the fluids of the inner ear. In the inner ear, the vibrations travel along
the helicoid tube of the cochlea and resonate at a frequency-dependent point on the basilar membrane,
where they excite hair cells to produce electrical signals on the auditory nerve. A drawing of these
organs is shown in Figure 2.3.

During this process, various passive and active systems amplify the intensity of the vibrations
and sharpen the frequency selectivity of the cochlea, so as to present as clearly separated frequencies
to the auditory nerve as possible. These nerve signals are produced in a phase-locked manner with
the vibration itself, always firing around a fixed moment in the full cycle of oscillation, although
not necessarily for every wave period. The signals are only synchronized up to roughly 4000 Hz,
which preserves some amount of phase information for later processing stages. Intensity information
is likewise preserved in the density of nerve firings. Information about the frequency content of the
vibration is encoded spatially, as each hair cell and nerve fiber is tuned only to a small bandwidth of
frequencies [98, 6].

The inner ear implements a physical filter bank, where each frequency excites not just a single
place, but a range of places on the basilar membrane. The resulting operational frequency resolution
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Figure 2.3: Drawing of the human hearing organs [98].

is referred to as a critical band [98]. Thus, two very similar frequencies presented simultaneously may
not be distinguishable, as they excite the very same place on the basilar membrane, even though
we can hear their difference in pitch if presented separately. Similar masking effects can be seen in
other places as well, where dominant stimuli can overpower and suppress weaker signal components if
presented in close proximity in time or frequency.

At this point in the auditory system, a voiced speech signal is represented by nerve firings at mul-
tiple harmonically related places on the basilar membrane, mostly phase-locked to one another. This
provides the first perception-oriented definition of pitch as the common fundamental of multiple har-
monics. Since harmonics only develop over multiple periods, this measure has a lower time resolution
than the production-based definitions, and can thus be ambiguous during rapid transitions.

From the inner ear, nerve signals travel through various neural structures, where the signals from
both ears are combined and pre-processed, until they finally enter the auditory cortex for language
processing and integration with the rest of the cognitive functions of the brain. Along the way, the raw
audio information is integrated into higher-level features such as onsets, sweeping, duration, repetition,
timbre, pitch, loudness, and localization [35, 98].

In general, most percepts scale approximately logarithmically with physical stimulus parameters
such as sound intensity and fundamental frequency'. For example, signal intensity needs to square
in order for loudness to double. Similarly, an equal-interval progression of pitches is achieved when
each pitch is multiplied by a fixed factor. Thus, perception-related measures for signal intensity are
logarithmic decibels instead of linear pressures, and octaves for pitch instead of Hertz [98].

While the pitch perception of pure tones is easily explained by the excitation of a particular place
on the basilar membrane, it is curious that we perceive a similar single pitch for tone complexes as
well. Many a psychoacoustical experiment has been conducted to ascertain the exact mechanism of
pitch perception. According to An introduction to the Psychology of Hearing by Moore [98], pitch
is evoked by periodic or harmonic signals and is caused most strongly by near-harmonic spacing of
partials in the center of the audible range, between 300 and 1000 Hz. Yet, clever experiments can
induce a perception of pitch in many alternative ways, for example from single harmonics, binaural
cues, phase changes only, or timing only. Furthermore, pitch perception shifts with loudness, envelope
fluctuations, and interfering tones, even though partial spacing remains unchanged. Perhaps most
tellingly, we can consciously switch between integrating partials into a tone complex and singling

1 Also known as Weber’s Law, or its “near miss” where it scales only approximately logarithmically [98].
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them out as separate pitches [98, ch. 5]. Thus there are clearly multiple mechanisms for evoking a
perception of pitch, some of which are basic signal patterns, others high-level interpretive actions.
It is therefore perhaps prudent to speak of pitch only in human contexts, and relegate algorithmic
discussions to the more rigorously defined concept of fundamental frequency?.

The human perception of pitch is therefore its most complex definition. It can be measured in
human experiments by comparing sinusoidal reference signals with a known fundamental frequency to
isolated speech sounds, but such experiments are time-consuming and impractical for large datasets.
As such, human pitch estimates are rarely available for designing and evaluating the kinds of funda-
mental frequency estimation algorithms discussed in this dissertation. They are highly relevant to
other scientific fields, however, such as auditory modelling or prosodic research.

Corollary to loudness and pitch, there is timbre, which encompasses any difference between tones
of equal loudness, duration, and pitch. Timbre can be described by crude categories such as roughness,
clarity, or warmth, which encompass differences in spectral makeup and timing envelope. For example,
timbre differentiates between otherwise similar sounds from a clarinet, a human voice, or the various
differences between vowels. Speech signals, in particular, encode considerable information in timbre,
which will be of great interest in the design of a fundamental frequency estimation algorithm later [98,
ch. 7].

In the last processing stage of speech in the brain, all of this information is finally integrated
into a holistic speech model. Research clearly shows that human brains process speech differently
from other sounds, making use of contextual information such as grammatical and syntactic structure,
language, physiological limitations, spectral changes, envelope changes, spectral content, and also
visual information and knowledge about the speaker. All of this has been shown to be used for
resolving ambiguities in speech signals [98, ch. 8]. Perhaps this immense knowledge base can explain
how humans can identify and understand speech with astounding acuity, even if severely distorted or
obscured.

2.3 Speech Properties

Without access to human auditory systems, algorithms need to rely on signal processing for making
sense of speech signals. Some aspects of human perception are readily translated into algorithmic
terms, while others remain elusive. On the other hand, algorithms are not constrained to the same
limitations as human ears. They can easily trade time resolution against frequency resolution, and be
supplied with high-resolution recordings with frequency and dynamic ranges beyond the capabilities
of the human ear. For speech signals, however, these advantages are likely irrelevant, as there is no
evolutionary incentive to develop intricacies of speech that cannot be perceived.

On a linguistic level, speech is made of sentences®, which are composed of words, which contain
syllables, which are constructed from phonemes. Phonemes are the atomic units of speech, from
which any utterance can be constructed. English and most European languages use on the order of 40
phonemes, and normal speech can produce phonemes at a rate of about 10 phonemes per second [35].

Phonemes can be characterized either as relatively long and steady signals, like vowels, which are
voiced signals with a distinct spectral signature of a fundamental frequency and strong formant peaks.
Or they can be characterized by transitions, like many consonants. For example, some phonemes such
as /p/, /b/, Jt/, /d/, /k/, and /g/ block the air flow for a short while, and then open up rapidly for
an onset of voiced or unvoiced sound. Consonants in particular are often strongly co-articulated, and
exhibit different spectral shapes depending on preceding and succeeding phonemes [175].

2This will be discussed more thoroughly later.
3technically clauses, since we rarely use complete sentences in spoken speech.
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Figure 2.4: Spectrogram of a speech signal, with voiced and unvoiced parts. Voiced parts consist of
low-frequency parallel tonal tracks that form a harmonic tone complex. Unvoiced parts are noisy with
a broader spectrum. All parts have a time-varying spectral shape.

In signal processing terms, speech can be described as a noisy or tonal excitation, filtered by an
adjustable peak filter bank, and shaped by variable air low and openings. Atonal parts of speech are
shaped noises, while tonal parts exhibit a harmonic structure.

Figure 2.4 shows an example recording of voiced and unvoiced speech. The unvoiced part of the
speech is a noisy segment above 4000 Hz around 0.75 s. The voiced speech directly before 0.75 s and
after 0.8 s has a fundamental frequency track around 150 Hz, with harmonics at integer multiples of
the fundamental. We perceive each entire tone complex as a tone with a pitch of the fundamental
around 150 Hz. Formants are visible in the above example as broad magnitude maxima around 500 Hz,
1800 Hz, and 2500 Hz for the /e/, and 700 Hz, 1000 Hz, and 2500 Hz for the /a/. These spectral
shapes give rise to the /e/ and /a/ timbre.

The different phonemes in Figure 2.4 clearly overlap (“es”), and morph into one another (“war”).
Each phoneme in this example spans roughly 100 ms, including its onset and offset, and the spectrum
constantly changes without ever coming to rest in a steady state. Just before the /w/ is a stop, where
the air flow is momentarily interrupted. This indicates a break between words in this case, or it might
be considered part of the succeeding phoneme, depending on context. Thus, phonemes should not be
seen as discrete and unique entities, but merely as transitory states that the vocal tract expresses as
it produces speech.



Chapter 3

Speech Signals for Pitch Analysis

Humans use speech not only in calm conversation, but also as a means for expression, far beyond
the limits of language: melodically and rhythmically in music, shouting or screaming in anger or fear,
whispering, or even with pathological defects. Speech happens in all situations of life, from a quiet
conversation with a friend to shouted exultations during a rock concert. This can happen in all of
humanity’s languages, with voices ranging from the chirping of small children to creaky old men.

This incredibly wide scope of use cases is too broad to be studied in its entirety. For the purposes
of analyzing the fundamental frequency of speech in this dissertation, a practical subset of speech has
to be chosen:

In this work, speech shall refer exclusively to non-reverberant, single-channel, digital
recordings of a single normal' adult voice at comfortable loudness and additive background
noise, speaking plain English.

This limitation allows the use of multiple, large speech and background noise databases. This
is a critical advantage as a scientific work, as these databases are widely used in other publications,
making results comparable to others; databases are freely available, making results reproducible; and
the databases are annotated with various linguistic and physiological metadata such as fundamental
frequency ground truths or laryngograph recordings.

In the rest of this chapter, we shall look at each of these limitations, and clearly delineate their
specific purpose and what this means for the applicability of our findings:

Digital Recordings
All of the analysis done in this work is implemented as computer programs, using digital signal
processing algorithms. Speech signals are represented as sampled, quantized series of numbers.
Depending on the database, sample rates of 16 kHz, 20 kHz, and 48 kHz and bit depths of 16
bits were used.

The conversion from sound waves to numbers limits the frequency content of each speech record-
ing to half the sample rate and introduces a small measure of quantization noise. In practice,
the quantization noise is largely irrelevant, as most investigations in the present dissertation in-
troduce additional background noise far higher in level than that. Similarly, since speech power
generally decreases with frequency, the high-frequency components discarded by sampling would
likely be obscured by background noise anyway.

Digital signal processing is done in computer programs using 64-bit floating-point numbers. This
data format far exceeds the resolution of the original recordings, and its errors should be small
in comparison to the quantization noise discussed above.

! Normal voice here refers to the technical term for a mode of phonation, not the colloquial synonym of “ordinary™.
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More importantly, many of the third-party algorithms used in this dissertation were programmed
by inexpert programmers, and sometimes produce errors in unexpected signal conditions or due
to numerical instabilities. If these errors caused the program to malfunction or stop, it was
re-run with a different signal. However, some errors occurred silently and led to incorrect results.
While precautions were taken to be as error-tolerant as possible in our evaluations, the fact
remains that many of our evaluations are unprecedented in scope, and therefore are bound to
find error cases that the original authors were not aware of. Such programming errors might
show as diminished accuracy in our evaluations.

Single Channel Recordings

Humans perceive speech with both ears and can make use of the comparative information of these
two streams, both in frequency content and in timing differences. These cues are highly useful
to humans for distinguishing between different simultaneous speakers and ignoring background
noise. In signal processing terms, multi-microphone recordings allow for the use of beamforming?
to reduce background noise and reverberation [154, 158].

However, using these features in this dissertation would also require additional considerations of
sound source locations and room acoustics. While interesting in their own right, these issues are
ancillary to understanding the fundamental frequency of voiced speech. Hence, in the interest
of focusing more readily on the time-frequency structure of speech, issues of multi-microphone
recordings, room acoustics, and head-related transfer functions, are excluded in this evaluation.

This simplification has the downside of ignoring a whole host of pertinent aspects of speech
perception and might indeed put our algorithms at a disadvantage in comparison to human
listeners. On the other hand, it removes a few variables from the equation as well, and greatly
simplifies experimental aspects of the evaluations.

Non-reverberant Speech Recordings

In the real world, most speech signals happen in noisy, reverberant environments. In contrast,
all the speech databases used in this dissertation were recorded in sound-proofed recording
environments, with as little distractions as possible. Such clean recordings can be mixed with
noise recordings for a plausible simulation of speech recordings in noisy environments, and allows
for the evaluation of various signal conditions without having to re-record audio material for every
new condition.

On the other hand, there is some fidelity that is lost in this simplistic process. Re-creating each
evaluation scenario in the real world, with real reverberations and real environmental noises,
would certainly be more life-like. As these recordings are time-consuming to set up, however,
including them would necessarily limit the scope of what could possibly be evaluated in the
given time. The points on additive noise and background noise below shed more light onto the
limitations of this methodology.

Single Speaker

Speech exhibits an intricate structure in time and frequency. When two speakers are speaking at
the same time, these structures overlap and mix, making the details of each speaker that much
harder to discern.

In the real world, such mixing occurs regularly and human listeners are very good at distinguish-
ing between multiple speakers. Humans have various methods at their disposal for separating
simultaneous speakers, some of which are based on inter-aural differences, while others are ap-
plicable to single-channel recordings as well [98, 160].

2A technique that filters signals by direction of arrival. Also known as spatial filtering.
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However, in most real-world conversational scenarios, humans tend to focus on one dominant
speaker at a time. As this work includes background noises with speakers in them as well as
explicit babble noise®, we will still deal with the disturbances caused by interjecting speakers,
but will not indulge in trying to separate the speakers or estimating their different voice patterns.

Normal Voice
There are at least four common modes of phonation: Normal speaking, breathy voice, falsetto,
and hoarse speaking, which differ in the way the vocal cords vibrate [6]: In normal speaking, the
vocal cords open and close repeatedly to admit short pulses of air into the vocal tract. For the
breathy voice, such as when whispering, the vocal cords never fully close, and a small continuous
stream of air remains at all times. When strained during a workout or vocal stress?, we use a
hoarse voice, where the pulses are shorter and more abrupt. Finally, falsetto or head voice is
mostly used when singing and reaches higher frequencies by closing the vocal cords only very

briefly each iteration.

All four of these modes can be used to produce speech, but sound distinct and are utilized for
different purposes. The speech databases employed in this work exclusively contain normal mode
phonations, which we use for calm, conversational speech.

Using only the normal mode of phonation is a reasonable limitation for the purposes of study-
ing fundamental frequency estimation of normal speech. However, while Western European
languages certainly have little use for other modes of phonation, other languages might. Fur-
thermore, this equally eliminates any study of pathological voices and might make this work’s
findings less applicable to emotionally charged voices.

Adult Speakers
The speech databases used in this study are limited to the voices of adults. As humans grow from
children to adults, all of their vocal organs grow with them, which gradually lowers resonant
frequencies both in the vocal folds and the vocal cavities, while vastly increasing the volume
of the lungs. These changes vary between sexes, and can be rather abrupt, particularly during
puberty. Male adolescents additionally switch from using their head voice to their chest voice in
the late stages of puberty, which changes their voice yet again [52, 164].

Due to these changes, the voices of children, adolescents, and adults are quite distinct, and
valued differently for their particular qualities. In ancient times, the voice of castrated males,
with adult vocal power but a child-like larynx, was deemed the most beautiful of all. While this
has (thankfully) fallen out of favor during the last centuries, pubertal development is sometimes
intentionally delayed to preserve singers’ voices slightly longer [52].

As these variations and changes to the voice are sweeping, their study would unduly widen the
scope of the present work. This is particularly tragic, as it seems to happen all over the signal
processing community, a fact easily observed when children try to use any kind of voice-controlled
technology and invariably fail to be understood [123, 165].

Thankfully, most speech databases are at least somewhat balanced with regard to sexes and
pitches, which provides at least some measure of the variabilities of human voices. A further
investigation of the diversity of speech databases is presented in Chapter 9.

Additive Noise

Background noise is everywhere, from the faint whir of a computer fan, to birds chirping, to

3 A mixture of many simultaneous speakers.
4or in an involuntary response to loud background noises, due to the Lombard Effect [15].
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the din of construction work, and the hustle and bustle in a busy cafeteria. There is almost no
situation in life where we are free from the sounds of nature or civilization.

Consequently, speech is a signal that is necessarily resilient against noise and can still transport
information even if severely degraded. Typical background noises have a wider frequency content
than speech. Thus, high-frequency components of speech are often the first to be drowned out
in noise, with the rest following shortly thereafter, which is probably why speech is particularly
tolerant to high-frequency degradations. Still, most speech remains intelligible up to signal-to-
noise ratios (SNR) of roughly 5 dB [90].

This dissertation acknowledges this resiliency by mixing speech signals with background noise
recordings at various SNRs. We employ multiple background noise databases, which contain
noises from all walks of life, including the aforementioned traffic noise, construction work, and
cafeterias, as well as artificial and more uniform noises such as white noise.

However, this only covers a fraction of the disturbances possible in the real world. One partic-
ular omission is recording degradations such as jitter or frequency distortions. These kinds of
noises are non-additive and can range from minor annoyances to rendering the recording entirely
unrecognizable, but cannot be recreated through additive noises from common noise databases.
On the other hand, these kinds of distortions are usually artifacts of the recording medium and
do not occur acoustically. As such, this dissertation does not consider them an aspect of human
speech and will not include them in its evaluation.

Another common issue that does occur acoustically is reverberations. Reverberation happens
when speech or noise is reflected off several surfaces, and therefore reaches the microphone
from more than one path simultaneously. Reverberations are heard particularly strongly in
enclosed spaces with hard surfaces, such as churches or caves. Normal living spaces often in-
clude dampening elements such as lowered ceilings in classrooms or furniture in homes, which
reduce reverberations. In moderation, reverberation is a normal part of speech and easily tol-
erated. When too strong, however, speech can become hard to understand quite quickly. For
the speech databases, recordings are typically from acoustically insulated recording booths, but
noise databases often include all naturally occurring reverberation.

In the context of the present work, reverberations pose a serious problem, as they introduce
a number of difficult-to-factor variables, such as the amount of early and late reflections to
apply to the speech signal and to the background noise. These factors are closely related to
the problems of multi-channel recordings discussed earlier and would introduce a number of
new environmental variables into the evaluations. Furthermore, all recordings in our databases
already include a small measure of reverberations on their own, which might produce unnatural
results if combined with simulated reverberations.

In light of these difficulties, this work will ignore reverberations, beyond what is present in the
databases already.

Plain Language

There is a wide range of emotional stances possible in the production of speech. We use rhythm,
pitch, and stress to convey meta-information about emphasis or emotions without changing the
phonemes themselves. These speech characteristics are called prosodic features, and greatly
enhance our ability to communicate through speech beyond the actual words.

However, the databases used in this work mostly contain simple sentences read in a level voice,
without much emotion attached. This is partly because they are being read out-of-context by
the study participants, and partly to keep the database entries as interchangeable as possible.
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This robs the speech material used in this dissertation of a natural means of expression that is
an integral part of conversational speech. Additionally, it makes our results less applicable to
other languages that require the use of prosodic features. On the other hand, prosodic features
do not change the actual phonemes. Their impact on the time-frequency structures of speech
is therefore likely to be small, and an acceptable price to pay for using well-regarded speech
databases.

English
Lastly, this dissertation uses recordings of the English language only, spoken by European and
American speakers.

This limitation is mostly due to the language of science (in the West) being English, and therefore
the higher availability of datasets in that language. After all, a work in German, French or
Italian is not as likely to be read widely as a work in and about English. Consequently, even
non-English scientists often prefer to create speech databases in English rather than in their
native tongues, on account of being more widely citable [119]. In fact, this very study does
not even include the author’s native language of German at all, despite that native material
obviously being understandable to the author. Even the English language itself could provide
more varied dialects than are represented in our databases.

Most techniques discussed in this work should be applicable to other languages as well, since
this work is mostly concerned with the basic capabilities of the human vocal tract, rather than
their language content. In particular, European languages are relatively similar to one another
phonetically, and are unlikely to differ much in the pitch of their speech [13]. Thus, there is
little value in repeating each experiment in multiple European languages for the purposes of
fundamental frequency estimation. Still, the more different a language is from central European
languages and English in particular, the less applicable our findings are likely to become.

In summary, speech is humanity’s primary means of communication, and is consequently used in
a vast array of circumstances and modalities, far beyond what could reasonably be studied in one
dissertation. We therefore limit the scope of this work to a small subset of “typical” speech in noise
that we hope is sufficiently representative in terms of its fundamental frequencies, while minimizing
the number of variables.



Chapter 4

Conclusions

The usefulness of speech and language to humans does not require explanation; it is so integral to our
existence and society that we could hardly call ourselves “human” without it. Yet, our understanding
of how speech works, precisely, remains an active area of research’.

This introduction covered speech and its fundamental frequency, their production in the vocal
system, and their perception in the auditory system. Without question, there is an enormous depth
to these topics that remained unmentioned. Indeed, entire books have been written about each one
of them [35, 98, 131].

Many descriptions of speech have been given, in terms of a linguistic stream of information, as a
physiological process of phonation, an acoustic sound wave, and as an auditory perception. In recent
years, these interpretations have been expanded in a new direction: speech as a digital signal for
analysis and synthesis in computer programs.

This new interpretation of speech for the purposes of digital signal processing allows speech to
be understood and produced by non-human, technological devices, albeit (presumably) not with the
same fidelity as human listeners and speakers.

In this context, the investigation into voiced speech’s pitch, and thereby into the detailed structure
inherent to speech, needs to be defined both in technological terms and in physiological ones. Histori-
cally, this distinction was made clear in the use of the technical term fundamental frequency, and on
the other hand pitch, its human perception.

However, both terms leave something to be desired: While pitch is simply a human percept, it is by
no means an unambiguous one. That “quality that is high or low” can in fact be both, simultaneously,
which makes the term a bit too loose to be estimated in a computer algorithm.

The technical fundamental frequency is similarly vague, in that its definition is only clear-cut for
simple sinusoids, but not speech. Multiple definitions of a “fundamental frequency” of speech were
brought forth in this introduction, all relating to some aspect of our production or perception of pitch.
After all, speech is only relevant in a human context, and so must a well-defined fundamental frequency
of it correspond to our perception.

In this dissertation, we will therefore leave both of these definitions open to interpretation. Pitch
will be used both as a human percept, and as an algorithmic approximation thereof, and fundamen-
tal frequency will mean both “the frequency of the lowest harmonic”, as well as more perceptual
interpretations.

With such leeway in the definition of pitch or fundamental frequency of speech, estimation methods
are similarly diverse. Algorithms estimate pitch from periodicity measures, as in speech production,
or from harmonicity measures, as in perception, or directly from a ground truth and machine learning
methods, or a combination thereof. Naturally, these approaches come with different strengths and

lalso known as “a mystery” to non-scientists.
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weaknesses that will be investigated in great detail in a later chapter.

Evaluating the performance of such fundamental frequency estimation algorithms requires a reliable
ground truth to compare against. It may be calculated by a reference algorithm either from clean
versions of the speech signal in question or from an additional laryngograph recording if available,
or by measuring consistency of a single algorithm at various SNRs. The construction of a suitable
ground truth and evaluation methods useful for comparing and evaluating algorithms will make up
the remainder of this dissertation.

Thus, this dissertation accomplishes four distinct tasks to investigate the algorithmic estimation
of fundamental frequency of speech:

o Part II introduces a set of tools for analyzing speech signals in the short-time Fourier transform,
including contributions to phase spectral analysis methods and a new visualization technique for
phase data.

o Part III describes a new algorithm for fundamental frequency estimation that uses phase spectral
information as well as traditional techniques.

e Part IV constructs a new consensus ground truth method and database to overcome the chal-
lenges with existing ground truths for speech signals.

e Part V evaluates a large range of existing fundamental frequency estimation algorithms with
traditional and new evaluation methods, databases, and ground truths.

Part II starts with Chapter 5, which introduces the foundational techniques necessary for analyzing
speech signals in the rest of this dissertation. In particular, it discusses the properties of the short-time
Fourier transform, which is a key ingredient in the analysis of speech signals, which disentangles signals
along time and frequency. Doing so, however, introduces new parameters such as window functions
and block lengths that need to be chosen with care to not fool our algorithms and eyes.

The chapter ends with visualization techniques for short-time Fourier spectra. This is critical for
the analysis of speech signals, as our sophisticated auditory perceptions are unavailable to algorithms,
and we must thus rely on information we can see with our eyes instead. This chapter also includes
our first contribution, in the form of a new perceptually-smooth, circular color map purpose-built for
visualizing phase spectra.

Chapter 6 expands this analysis to derivatives of the short-time Fourier transform, which con-
veniently re-integrate the flow of time into the short-time Fourier transform. Additionally, phase
derivatives provide an easy interpretation for the otherwise obtuse spectral phases, and thus make
them available to analysis. While parts of these techniques have been published before, their synthe-
sis with specifically-adapted window functions is a minor contribution of this dissertation. The part
concludes in Chapter 7 with a summary of lessons learned.

Chapter 8 in Part III applies these techniques to design and evaluate an algorithm for estimating
the fundamental frequency of speech. The novelty of our approach is in using multiple signal represen-
tations to re-frame fundamental frequency estimation as a fine-grained voicing detection problem. This
enables the algorithm to not just select a most likely fundamental frequency, but to predict accurately
whether an estimate is salient or not. Thus the algorithm is comparatively reluctant to label a frame
voiced, but much more precise when it does. These characteristics are evaluated and confirmed on a
large corpus of speech and noise recordings and in reference to other common fundamental frequency
estimation algorithms.

However, such claims of accuracy can only ever be made in comparison with ground truths, which
are typically part of published speech corpora. The choice of speech corpus and ground truth therefore
imparts unavoidable biases on every evaluation. To investigate these biases, Chapter 9 of Part IV
examines various speech corpora in terms of their diversity, spectral characteristics, and fundamental
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frequency ground truths. A number of significant differences are found, which have no doubt influenced
many an algorithm in the past, and will continue to do so in the future.

To lessen their impact, Chapter 10 introduces a new ground truth, the consensus truth, which
replaces the corporas’ own estimates with the consensus of multiple fundamental frequency estimation
algorithms. In contrast with common laryngograph-based ground truths, the consensus truth is derived
from the same category of data as an algorithm’s estimate, and is therefore more compatible in its
failure modes and voicing decision. Apart from these details, results are very similar to published
ground truths, and can therefore be used interchangeably with existing ground truths, or as a source
of truth where no ground truth is available.

With this new and independent consensus ground truth, and a number of well-examined databases
available, Part V evaluates the estimation characteristics of various fundamental frequency estimation
algorithms in an unprecedented variety of circumstances. Chapter 11 introduces the parameters of
this evaluation, including a historical retrospective on the algorithmic developments of the last thirty
years, a literature review of algorithms and past comparison studies, and a thorough definition of
performance metrics and computational considerations. The literature review shows little consensus
among previously published studies, which underlines the need for rigorously defined performance
metrics and evaluation parameters such as ours.

Thus, Chapter 12 examines these algorithms, corpora, and performance metrics in detail, in order
to find the strengths and weaknesses of different approaches. In the end, this unprecedented compari-
son study reveals a number of hitherto unpublished details and characteristics, both of the algorithms’
behaviors, and that of reference databases and common performance metrics. As a conclusion, we
must abandon the notion of a best algorithm for all applications. Instead, there can merely be algo-
rithms and corpora well-suited for particular tasks, and a general need for more diverse corpora and
more comprehensive performance measures.

Finally, Part VI concludes this dissertation with a summary of the lessons learned, and a skeptical
outlook of the field’s future. After all, speech is inimitably human, and the variations between funda-
mental frequency estimation algorithms were found to be just as large as between different humans.
This meta-analysis of fundamental frequency estimation turned out to provide far more interesting
insights into the foundational values of speech analysis in general than the specifics of particular
algorithms.

An Appendix then provides additional resources, such as notes on the implementation of the
evaluation framework, source code, and summary profiles of the fundamental frequency estimation
algorithms tested.



Part 11

Analysis Techniques for Short-Time
Speech Spectra

Where the necessary tools of speech analysis are laid out for
analyzing the fundamental frequency of speech signals.

Chapter 5 formally introduces our main signal represen-
tation, the short-time Fourier transform, which disentangles
signals in time and frequency. These spectra spectra reveal
the harmonic or periodic structure of voiced speech, but they
can only show one or the other, depending on its windowing
parameters. Additionally, techniques for visualizing short-time
Fourier spectra are discussed with respects to both technical
limitations and those of human visual perception. The chapter
ends with a new color map designed for displaying cyclic phase
data without visual artifacts.

Chapter 6 expands the short-time Fourier spectra with
an introduction of its derivatives in time and frequency. These
are particularly useful for spectral phases, whose cyclic nature

makes them otherwise difficult to interpret.

The part ends with a conclusion in Chapter 7.
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Chapter 5

The Short-Time Fourier Transform

Human listeners experience sounds across many dimensions, such as timing, rhythm, loudness, pitch,
coloration, timbre, and many more [98]. As rough categories, these can be grouped in timing features,
where a property changes from phoneme to phoneme; and spectral features that describe the particular
qualities of a single phoneme’s sound.

This two-dimensional view of interpreting a sound in time and frequency is rooted in the physiology
of the inner ear, which splits signals into frequency components that vary over time. But why adhere
to these physiological limitations in signal processing? After all, there is no rule that signal processing
algorithms need to follow human biology. Yet, speech is a special case, where both the production and
perception of speech is an inherently human affair that derives all its meaning and interpretation solely
from its use by humans. A physiological interpretation of these signals therefore seems particularly
promising for technical interpretations as well.

This chapter will introduce various methods of splitting a speech signal along time and frequency,
which all follow a common pattern: Splitting the speech signal into short, overlapping blocks, then
transforming each block into the frequency domain with the help of the Fourier transform. These
methods are commonly referred to as “time-frequency representations” or “spectrograms”.

To calculate a spectrogram, a window function w(n) is applied to the signal s(n) that extracts a
short section of the signal, commonly referred to as a “block”. The Fourier transform of the block is

S(t, f) = / s(n) - w(n —t)e~2™/ndn, (5.1)

where the block is centered around a time ¢, and the Fourier transform is calculated for a frequency
f- The window function is non-zero around its center w(n = 0), and zero at w(|n| > N), thus limiting
the block to a length N.

In the following chapters, a variety of such spectrograms will be examined for the purpose of
analyzing speech signals. These methods will vary the window function, the block length, and add
post processing steps, to highlight different aspects of speech signals. We will refer to the form shown
in Equation 5.1 as the short-time Fourier transform (STFT).

Figure 5.1 shows the STFT magnitude of a short speech segment. The lower half of the spectrogram
shows horizontal line patterns, which represent the speaker’s voiced speech as a fundamental frequency
around 130 Hz, and parallel harmonics at integer multiples of the fundamental. Noisy consonants are
shown as vertical bands across the entire frequency range with no harmonic structure. Formants are
visible as broad spectral maxima superimposed on the harmonics around 500-1500 Hz.

The STFT in Figure 5.1 uses a raised-cosine Hann window wy,,,(n), which is a common choice in
speech analysis:
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Figure 5.1: An STFT magnitude of the author speaking the short sentence “Es war einmal ein Mann”
(top), and the signal waveform (bottom).

o () { (1-+cos(f) it nl < § 52)
0 otherwise.

An algorithm called Fast Fourier Transform (FFT) is typically used to calculate an STFT with
much fewer steps than Equation 5.1 might imply. Calculated this way, a time signal is decomposed into
a complete set of coefficients for a regularly-spaced set of frequencies that fully describe the original
signal. In many ways, large parts of the field of signal processing and modern life only became possible
thanks to the invention of the FFT and its multitude of analytic and synthetic applications [129].

In the STFT, signals are representated as a two-dimensional matrix of “bins” along time and
frequency, which are complex numbers that are often decomposed into a magnitude |S(¢, f)| and a
phase ZS(t, f) component:

S(t, ) = [S(t, f)| eSS (5.3)
If calculated with the FFT, the Fourier integral extends from 0... N instead of Equation 5.1’s

definition of —N/2...N/2, thus introducing a phase shift of ¥/2. To counteract this phase shift, the
FFT-calculated Sppy(t, f) needs to be phase-shifted back:

S(t, ) = Sppr(t, f) - e 2 (5.4)
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Figure 5.2: Illustration of the STFT: Cut the signal into short, overlapping blocks, apply a window,
and Fourier-transform each block. Spectra in color are calculated from the signal blocks indicated by
the colored window functions on the waveform. Window functions of greyscale spectra are not shown.
All spectra are calculated with ca. 80 % overlap of 50 ms blocks and Hann windows.

Each STFT spectrum is derived from a signal block centered around a specific time index ¢. In
practical applications, however, STFTs are rarely calculated for ever time index of the signal, as this
would result in highly-redundant spectrograms due to the large overlap of neighboring blocks. Instead,
STFTs are commonly only calculated for fewer instances, such as every block length N, or a fraction
thereof. In the latter case, the time resolution of the STFT is commonly characterized by the overlap
percentage between succeeding blocks.

Figure 5.2 shows an example of an STFT magnitude of a short speech segment, with a number of
window functions superimposed on the waveform, and their STFT magnitude spectrum highlighted
to illustrate how signal blocks are transformed into STFT spectra. Note how blocks are displayed
centered around their center time ¢, where their raised-cosine window functions are maximal. This
is in contrast to alternative definitions that define ¢ as the start or end of each block, where our
raised-cosine window functions would be zero.

The STFT magnitude is commonly displayed logarithmically in decibels (dB), which are
20 - log,, (IS(t, f)]), as this represents simultaneous signals as additive in the STFT, and gener-
ally compresses the STFT magnitudes to a more legible range. As this dissertation is only concerned
with digital recordings, any use of decibels here is in reference to a sinusoidal signal with a full-scale
amplitude of -1 or 1. This unit of measurement is sometimes abbreviated dB FS, which in this
dissertation is synonymous with dB.

The STFT phase is harder to visualize and interpret than the STFT magnitude. Low-resolution
Image graphs such as Figure 5.2 are in fact mostly inscrutable as phase angles vary too quickly in
time. Phase angles rotate once per signal component period, which only becomes visible at very high
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Figure 5.3: STFT phases of the same signal segment as in Figure 5.2, but with ca. 99 % overlap and
Hann-Poisson windows. One phase rotation per signal component period, such as ca. 130 Hz for the
fundamental, and ca. 260 Hz for the first harmonic.

overlaps, as shown in Figure 5.3. Chapter 6 will look into various alternative methods of interpreting
and visualizing this data that does not require such high time resolution.

The rest of this chapter is organized as follows: The minimum block length requirements for
speech processing are discussed in Section 5.1. If all the data in the speech signal is to be analyzed,
consecutive blocks should overlap, which is discussed with a general overview over the properties of
various window functions in Section 5.2. Section 5.3 will explore the challenges and techniques of
visualizing STFTs in more detail.

5.1 Block Lengths

Speech signals are made from a rapid series of different configurations of the vocal organs. For the
purposes of speech analysis, both the content of each configuration, and the sequence of configurations
is of interest. Thus, a compromise has to be struck between long block lengths with considerable
spectral resolution, and short block lengths that show detailed differences over time.

Specifically, voiced speech contains harmonics as closely spaced as 80 Hz for a deep voice. In order
to resolve these individually, the harmonics need to be separated by at least two bins in the spectrum.
Furthermore, voiced speech sounds remain relatively unchanging for at least 25 ms [110, 6], so block
lengths should be no longer than that!.

'Even though most speech processing publications use block lengths between 10 ms and 40 ms, actual evidence for that
choice is surprisingly hard to find. Chapter 3.8 of [110] quotes a number of durations between 25 and 180 ms for phoneme
durations, but also states that stress, speaking rate, and sequence influence phoneme duration, while coarticulation and
varying pitch contours will introduce intra-phoneme spectral shifts.
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Figure 5.4: Two STFT magnitudes of the same voiced speech segment at different block lengths.
At short block lengths, STFT appears periodic; at long block lengths, it looks harmonic. Window
function shapes are shown in the bottom plot (different Y scale).

To accommodate both of these requirements at common sample rates, block lengths should be
approximately within:

fs

— < < 0. . .
s <V < 002051, (5.5)

For f, = 48000 Hz this means block lengths 600 < N < 1200, and for f, = 16000 Hz it means
200 < N < 400. For example, common audio codecs in GSM use a sampling rate of 8000 Hz, and
block sizes of 20 ms [156, 136].

However, the maximum window length is only applicable to the rectangular window, which includes
each block in its entirety. Many window functions instead taper off towards zero at their beginning and
end, in order to trade some time resolution for improved spectral acuteness. Such tapering windows
render only the block center with good accuracy but attenuates block fringes. It is therefore reasonable
to use significantly longer block lengths for these kinds of windows, as investigated in Chapter 5.2.4.

5.1.1 How Block Length Affects the STFT

At its source, voiced speech is produced by periodic opening and closing of the glottis, which releases
puffs of air into the vocal tract. Thus, at short enough time frames, voiced speech is a periodic signal
made from glottis pulses. However, all STFTs up to now showed non-periodic, harmonic patterns
instead, with a fundamental frequency and multiple harmonics at integer multiples of the fundamental.

This duality of a periodic signal, giving rise to a harmonic spectrum, is a fundamental property of
the STFT. The long window lengths used in all STF'T graphs so far encompass multiple pulses and
show their interactions as harmonic patterns. If window lengths are shortened to include only single
pulses, the harmonic pattern is replaced with a periodic one. It is instructive to look at this duality,
since viewing voiced speech as either periodic or harmonic highlights different aspects of its structure.

Figure 5.4 shows the STFT magnitude of a short segment of voiced speech at different block
lengths. In the left graph, each block only contains a single glottis pulse, resulting in a periodic STFT
magnitude. In the right graph, each block contains multiple glottis pulses, and shows a harmonic
STFT magnitude.
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The left “wide band” STFT with a short block length clearly shows how the speech signal is made
from individual glottis pulses. The power and time of these pulses matches the shape and rhythm of
the waveform, while the spectral distribution of the pulses shows the resonances of the vocal tract.

Interestingly, the pulses are slightly dispersed over time, with lower frequencies peaking earlier
than higher frequencies. In the shown case, the blocks are so short that the STFT magnitude peaks
at the fundamental frequency both at the waveform maximum, as well as the minimum with a zero
in between. This multi-peak structure seems to repeat at a higher frequency as well.

This kind of fine-grained timing information is absent in the right “narrow band” STFT with a block
length spanning multiple glottis pulses. Instead, the signal appears harmonic, as a series of parallel
horizontal lines. The resonances of the vocal tract are still visible as varying partial magnitudes. In
this graph, the most obvious feature is the slight frequency modulation, which sweeps the fundamental
frequency from appr. 130 Hz to 190 Hz.

This has important ramifications for STFT spectra at different block lengths: Since harmonicity is
a side-effect of multiple clicks in the same window, it can only develop if the block actually encompasses
multiple clicks. If block lengths are shorter than that, there will no longer be any interaction between
multiple clicks, and the STFT spectrum will lose its harmonic structure.

5.2 Window Functions

The first step in the short-time Fourier transform is to cut the signal into short, overlapping blocks.
Then, a window function is applied to each block, which typically tapers to zero at the beginning and
end. Finally, each windowed block is Fourier-transformed.

The purpose of the block window is to work around an inherent quirk of the STFT: cutting signals
into short blocks introduces sharp transitions where the cut is made. Tapering window functions hide
these block transitions by gradually attenuating the signal towards the ends of the block. With no
amplitude at the beginning and end, there is no sharp transition anymore. However, this replaces the
transition problem with a new problem: Now the shape of the signal has been tampered with, which,
in turn, affects the spectrum.

Thus, the design of the window function has to strike a delicate balance between hiding block
transitions, and changing the signal shape. Many window functions have been proposed for various
purposes, and entire books have been written about them [124]. In this work, the main focus will
be on the Hann window for magnitude spectra and the Hann-Poisson window for phase spectra. In
addition, it is useful to first look at the effects of the non-tapering rectangular window.

5.2.1 The Rectangular Window

The rectangular window is a fancy way of saying that no tapering window function is used at all. All
amplitudes are left as they are, and the transition problem is in full effect. However, describing this
as an all-ones window function allows some abstract reasoning about the effects of block processing,
independent of the window function or signal to be analyzed.

Formally, the rectangular window? of length IV is

1 if —¥<n<X
w n) = 2 = 2 5.6
rect (1) {0 otherwise. (5.6)

As this window function is multiplied onto the signal, its spectrum is convolved with the signal
spectrum. Figure 5.5 shows the rectangular window, and various ways of visualizing its spectrum.

2Technically, this is the symmetrical variant of it, which might not have N values 0 but is symmetrical around zero.
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Figure 5.5: A rectangular window of length 0.04 s (top left), its real and imaginary spectrum (bottom
left), its logarithmic magnitude spectrum (top right) and its phase spectrum (bottom right). Dashed
lines for implied zeros outside of the window.

The spectrum has a broad central peak, called a main lobe, and a series of side lobes beginning at
-13 dB, continuing to roll off at approximately 6 dB per octave. The spectrum amplitude oscillates
around zero, with the zero crossings represented as zeros in the magnitude spectrum, and negative
numbers as a phase angle of 7 [139].

In practice, this pattern is somewhat obscured by FFT’s use of causal time indices, which centers
the window around ¢, ;4 = % instead of 0, and accordingly shifts all phases by 2W%tmid. This has
been removed in the visualizations by shifting them back to 0.

When the rectangular window’s spectrum is convolved with the signal spectrum, the window
spectrum blurs or smears every spectral bin into the lobe pattern, making the overall spectrum softer.
Simultaneously, the phase of every bin is alternatingly flipped and unflipped in each side lobe.

Since every other window function also starts and ends with zeros, this smearing is a general fact
of life when block processing and windowing. However, the shape of the smearing pattern and lobes
is particular to the rectangular window.

5.2.2 The Hann Window

In speech analysis, the most widely used window functions are variants of the raised-cosine window,
where the window is 1 in the center, and tapers off according to the shape of a raised cosine flank
towards zero. The simplest of these forms is the Hann window:

This distinction is of little importance for our high- N applications with no reconstruction.
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Figure 5.6: A Hann window of length 0.04 s (top left), its real and imaginary spectrum (bottom left),

its logarithmic magnitude spectrum (top right) and its phase spectrum (bottom right). Dashed lines
for implied zeros outside of the window.

1 2mn\y ¢ _ N N
whann(n):{g (1+COS(N)) if —5 <n<3 (5.7)

otherwise

As this shape is a simple cosine signal, blocks with 50 % overlap add up to exactly the original
signal®>. This is of great utility for signal modification as it allows easy synthesis but is of little
importance to the present analytic work.

Other popular variants of the raised-cosine window are the Hamming window, which tapers to
near-zero instead of zero, or the Tukey window, which includes an area of ones in between the cosine
flanks [139]. Variants of the raised-cosine window are so ubiquitous, in fact, that common software
packages for calculating STFTs implicitly assume their use if no window function is specified?.

The advantage of tapering the window towards zero is lower side lobes, albeit at the cost of a wider
main lobe. In the case of the Hann window, the first side lobe is -31 dB relative to the main lobe,
and further side lobes roll off at -18 dB per octave [139]. Figure 5.6 graphs the Hann window and its
spectrum.

For speech analysis, the Hann window’s lower side lobes afford a better separation between dom-
inant sinusoidal tracks and the surrounding noise floor. The main lobe is considerably broader in
comparison to the rectangular window, but it is still narrow enough to separate harmonics of even
deep male voices at common block lengths and sample rates.

3The unsymmetric variant, that is.
4Matlab defaults to a Hamming window, Scipy to a Tukey window, and Matplotlib to a Hann window
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Figure 5.7: A Hann-Poisson window of length 0.04 s for o = 2 (top left), its real and imaginary spec-
trum (bottom left), its logarithmic magnitude spectrum (top right) and its phase spectrum (bottom
right). Dashed lines for implied zeros outside of the window.

5.2.3 The Hann-Poisson Window

In this work, much thought has been given to the phase spectrum of speech. Indeed, many aspects
of the speech signal are not encoded in the magnitude spectrum, such as intra-block modulation, the
precise time of clicks, or the precise frequency of a sinusoid. This information is instead encoded in
the magnitude’s often-overlooked sibling, the phase spectrum.

However, as the phase spectra in Figures 5.5 and 5.6 have shown, most window functions flip the
spectral phases of half their side lobes. The STFT phase therefore suffers much heavier distortion than
the comparatively benign smearing in the STFT magnitude. Similarly, the zeros between side lobes
of most window functions create parallel ridges to sinusoidal tracks in the STFT, and thus prohibit
the use of convex optimization methods® in the STFT magnitude [139].

Both of these issues are caused by the zeros and sign changes of the window spectrum. However,
the Hann-Poisson window is a unique window function that does not have any zeros in its spectrum.
The Hann-Poisson window is, perhaps quite overtly, the result of multiplying a Hann window with
an exponential (or Poisson) window. Figure 5.7 shows the window function and its spectrum. The

window function is given by:

2[n|

{;(14—008(2}{[“))6_&1\’ if —g§n<
0

vz

Whann-poisson — otherwise

5also known as “hill-climbing” algorithms, which follow gradients to a local extremum.
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Figure 5.8: STFT magnitudes of two overlapping sinusoids, with their frequency tracks (left), and
three different window functions (remainder). The three window functions use equal window lengths.

For any « > 2, the Hann-Poisson window has no zeros, and a zero phase. Further increases of «
increasingly smooths the side lobes and broadens the main lobe [139].

This smoothness comes at a cost, however, in that the “side-lobe” fall-off is not particularly steep
and the “main lobe” smearing is rather large.

Nevertheless, analysis of the phase spectrum and derivatives of the magnitude spectrum might
well benefit greatly from the absence of ripple and zeros provided by the Hann-Poisson window, which
will be of great interest in later chapters.

5.2.4 Equivalent Rectangular Window Length

The preceding sections showed significant differences in main lobe width between window functions.
The main lobe width is the most prominent cause of spectral smearing and should therefore be min-
imized. Figure 5.8 shows STFT magnitudes with the three window functions. The different main
lobe widths are visible as the thickness of the spectral maxima, which is smallest for the rectangular
window and largest for the Hann-Poisson window.

One way of decreasing the main lobe width is a longer window, which is usually limited by the
length of stationarity within the signal, or 20-40 ms for speech signals. However, more tapered
windows include very little data from the start and end of the window, so stationarity restrictions
could accordingly be relaxed considerably for these kinds of windows.

Figure 5.9 shows the rectangular, Hann, and Hann-Poisson window at equivalent window lengths,
where window lengths are enlarged so they include an equal amount of signal under the window. At
equivalent window lengths, the Hann window is twice as long as the rectangular window, and the
Hann-Poisson window 3.356 times as long.

Given these new window lengths, the right graph in Figure 5.9 shows their magnitude spectra. The
graph shows no significant main lobe width difference between the window functions. If equivalent
window lengths are used, main lobe width and smearing differences between windows can be ignored.

5.2.5 How Window Shape Affects the STFT Magnitude

As mentioned in the introduction to this chapter, applying any window function smears the spectrum.
However, this smearing is a necessary side-effect of cutting the signal into blocks. Figure 5.10 shows
the STFTs of two overlapping sinusoids, using various window functions at equivalent rectangular
window lengths.
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Figure 5.9: Rect (blue), Hann (orange), and Hann-Poisson (green) window at block lengths of equal
time integral.
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Figure 5.10: STFT magnitudes of two overlapping sinusoids, with their frequency tracks (left), and
three different window functions (remainder). The three window functions use the same equivalent
rectangular window lengths.

The graph shows how the lobe patterns in Figures 5.5-5.7 are represented in the STF'T magnitude.
Side lobes show up as parallel lines to the nearest of the two sinusoids and fall off significantly more
quickly for the Hann window than for the rectangular window. Side lobe strength can be thought of as
a sort of “noise floor” introduced by block processing and windowing, which attributes a better “signal-
to-noise ratio” to the Hann window than the Hann-Poisson-window, and again than the rectangular
window.

Since all three windows use the same equivalent rectangular window length, the main lobe widths
are very similar. In this sense, main lobe width is purely an artifact of block processing in general,
and more or less independent of the window function.

5.2.6 How Window Shape Affects the STFT Phase

STFT phases are notoriously difficult to interpret. Later chapters will show a number of ways of
making STFT phases easier to interpret through phase derivatives. However, for simple sinusoids, the
STFT phases can be visually understood as the argument of the sinus itself. Figure 5.11 shows STFT
phases of two sinusoids, one modulated, one of fixed frequency.

The last panel of Figure 5.11 is easiest to interpret, which shows the STF'T phases using the Hann-
Poisson window. In the top half, the rate of phase rotation speeds up as the top sinusoid’s frequency
rises, then slows back down. The bottom half shows the bottom sinusoid’s fixed frequency. The figure
uses extreme overlaps of 98.4 % to show individual phase rotations.
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Figure 5.11: STFT phases of two overlapping sinusoids, with their frequency tracks (left), and three
different window functions (remainder). The three window functions use the same equivalent rectan-
gular window length. Phases shifted to remove block processing time shift.

The other two panels for the rectangular and Hann window show the same pattern as the Hann-
Poisson window at the sinusoids’ frequencies, but flipping phases for every other side lobe, in accor-
dance with the phase flips described in sections 5.2.1-5.2.3. Thus, the Hann-Poisson window seems
advantageous for phase analysis, as the absence of side lobes and phase flips should make the STFT
phases easier to interpret.

Interestingly, the sinusoids’ phases show in STFT bins far beyond their frequency. STFT bins
clearly show the phase of the strongest, closest signal component, even if these components are of very
low magnitude. This property can be useful for attributing individual STFT bins to certain signal
components [36].

Between the two sinusoids in Figure 5.11 the STFT phases transitions sharply between the domi-
nance of the higher, modulated sinusoid, and the lower, straight sinusoid. This and sharp either-or of
STFEFT phases bins is a distinct contrast to the gradual superposition of STFT magnitude bins.

In complex real-world signals with additional noise, however, these simple patterns are not as easy
to recognize. Additionally, most practical visualizations will use far less overlap, and thus will not
resolve individual phase rotations, which further obfuscates the STFT’s phase structure.

5.2.7 How Window Overlap Affects the Waveform

Tapering window functions reduce signal amplitudes at the beginning and end of each block. Many
window functions, such as the aforementioned Hann and Hann-Poisson window, even reduce ampli-
tudes to zero at these points. This, however, also means that the beginnings and ends of blocks are
made invisible to the STFT.

Thus, in order to include all parts of the signal in the STFT, consecutive blocks need to overlap.
Naturally, the narrower the window function, the more overlap is necessary. Figure 5.12 shows various
overlap percentages for the Hann and Hann-Poisson window.

The figure shows how the sum of Hann windows is a straight line, which means that all parts
of the signal are represented with equal amplitude in the STFT. The Hann-Poisson window, on the
other hand, does not sum up to a straight line, and therefore emphasizes parts that fall near window
centers.

In practice, this means that the Hann-Poisson window should always be used with higher overlaps.
While this lessens the effect of the non-uniform window sum, there remains an amplitude modulation
artifact, which might emphasize signal partials in harmony with the block rate.
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Figure 5.12: Sums of overlapping windows: Blue lines show overlapping windows. Orange line is sum
of the windows (not to scale). Hann windows add to a steady sum, while the sum of Hann-Poisson
windows is time-variant.

5.3 Visualizing STFTs

The experience of viewing a speech STFT is very different from hearing it. STFTs provide an objective
interpretation of speech signals, disentangled along time and frequency in a way our perception is
unable to. As such, STFTs offer a different kind of insight into the structure of signals than our ears
allow.

In particular, a major drawback to human hearing is that we can only ever experience sounds
holistically in real time. There is no way of “zooming in” on a particular detail, or of “freezing” a
sound, and analyzing a particular instance on its own beyond repeated listening. By their very nature,
audio qualia are characterized only by their flow through time, and never to be experienced in isolation.

The STFT overcomes this human limitation with a visual representation of sound, one we cannot
directly experience as hearing but one we can analyze in great detail and independently from the
inevitable flow of time.

Perhaps even more importantly, we can use the powerful pattern recognition of our visual system for
finding structure in the STFT, even where our ears might struggle. So powerful are our visual pattern
matching facilities, in fact, that it is often quite tempting to forego listening to sounds altogether and
only focus on visual STFTs instead. This would be folly, however, as visual representations of STFTs
are often incomplete in terms of frequency range and resolution, and are missing STFT phases.

Many audible patterns of speech have a structured representation in the STFT and can therefore be
reasoned about visually. However, the human visual system is at least as complicated as the auditory
system and has many quirks of its own. The rest of this chapter looks at various idiosyncrasies of the
human visual system and what they mean for STFTs.

Some of these methods, such as dense sampling (5.3.1), are equally useful for human perception
as to machine interpretation. Others, such as color maps 5.3.2, 5.3.3), are merely workarounds for
deficiencies of human vision.

5.3.1 Resolution Requirements for Human Viewers

Technically, an STFT can be said to display a complete picture of a sound if every sample in the wave-
form is represented in at least one block with a reasonable amplitude. All three panels in Figure 5.13
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Figure 5.14: Magnitude STFT of a speech signal at different block lengths with oversampling. Same
data as in Fig. 5.13, but with denser sampling in time (left), frequency (middle), and both (right).

show such complete STFT magnitudes, yet the first two are nigh-unreadable in comparison to the
third.

The problem with Figure 5.13 is in how our visual system processes these images: We interpret
these images based on contrasts between light and dark patches, and color differences between ar-
eas [81]. However, the strongest contrasts in the first and second panel are not between features of the
signal, but in the sharp transitions between neighboring time-frequency bins. In the first panel, we see
this as vertical banding along blocks, and in the second panel as horizontal banding along frequencies.

In order to focus our visual perception on the signal features that matter, we therefore need to
ensure smoothness between neighboring time-frequency bins. Figure 5.14 shows the same signal as
the previous figure at the same block lengths but uses denser sampling to hide the sharp transitions
between bins. The left panel is sampled with 90 % block overlap instead of the customary 50 %. The
center panel is oversampled in frequency by zero-padding the FFT by a factor of 10. Even the right
panel was improved slightly by doubling the overlap and zero-padding.
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5.3.2 Perceptually Uniform Color Maps

When drawing STFT graphs, magnitude and phase values are encoded as colors in a two-dimensional
image graph. The color-maps used in this translation are of critical importance to our interpretation
of the data. In fact, multiple studies have shown how a simple linear gray scale can significantly
reduce error rates in medical applications in comparison to badly-designed color maps—despite years
of familiarity with the color map in question and no familiarity with the linear gray scale [11].

The basic design criteria for a color map must be to maintain visual contrast proportional to
the difference in value between bins [81, 12, 137, 87, 47]. The greater the difference between two
values, the greater the visual contrast should be. As a secondary consideration, colors should degrade
without artifacts when printed in black and white, or when viewed with color vision deficiencies or
badly calibrated monitors or projectors.

In STFTs, specifically, most information is encoded in changes across small visual distances, where
human vision is more sensitive to lightness differences than to hue. Color maps for STFTs should
therefore primarily scale along lightness, and merely use hue differences as a supplement, but not as
a main means for generating contrast. This automatically allows for printing in black-and-white as
well.

Furthermore, color vision deficiencies are most common in differentiating between red and green
hues, thus hue contrasts in this range should be avoided. Lest one assume that these are minor issues,
color vision deficiencies affect a full 8 % of all males [138], or, as Wong puts it in Points of View:
Color Blindness [167]: “if a submitted manuscript happens to go to three male reviewers of Northern
European descent, the chance that at least one will be color blind is 22 percent.”

These issues have come to a head in the last few years and have prompted multiple common
software packages for signal processing to swap out their antiquated rainbow-style color maps for
well-designed, perceptually uniform color maps along the blue-and-green hues® [95, 61].

It should also be noted that these considerations only fully apply to ratio scales, where a value can
indeed be said to be “twice as high”, and therefore map to a twice-lighter color. In a limited sense,
such color maps are still useful for interval scales such as STFT phases, or even ordinal scales such as
school grades. But they should be avoided for nominal scales, so as not to imply a rank order between
different values.

For this reason, this work will use the perceptually uniform color maps Viridis for magnitudes,
the circular, partly uniform Twilight for phases, parts of the uniform color map Magma for ordinal
non-image graphs, and the perceptually-equal Tableau color rotation for nominal, non-image graphs.
Figure 5.15 shows samples of all of these color maps, all of which are part of the software package
Matplotlib [61], with Twilight being a recent addition to Matplotlib by the author of this dissertation”.

The color map graphs for Viridis and Twilight follow Kovesi’s test image [81], which shows both
the full range of colors (left/center) and a high-frequency modulation. In a properly designed color
map, the contrast between modulated parts should be uniform across the entire value range, which is
the case for the color maps shown here.

5.3.3 A Circular Color Map for Phase STFTs

Phase STFTs contain angle values, which are circular in a range from 0 to 27. Circular means that
the “highest” phase angle of 27 is equal to the “lowest” value of 0. In fact, one could argue that no
phase angle is “higher” or “lower” than any other angle, as they differ in direction, not magnitude.
One should therefore not use a linear color map, such as the aforementioned Viridis or Magma, for

SDocumentation of this change in Matlab: https://matplotlib.org/3.1.1/users/df1t_style_changes.html and Matplotlib:
https://bids.github.io/colormap/
7See https://github.com/matplotlib/matplotlib/pull/6254 for the corresponding pull request.
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Figure 5.15: The color maps used in this dissertation. The left two panels use Kovesi’s test image.

displaying phase angles, as these would introduce a sharp contrast at its minimal /maximal value where
there should be a smooth transition. Instead, phase angles should be displayed with a color map that
is perceptually uniform around the entire unit circle, which is commonly called a circular (or cyclic)
color map.

Before this work, the only circular color map available in Matplotlib® or Matlab® was HSV, a
much-maligned [12] rainbow color map with highly non-uniform contrast across its value range. In
particular, HSV renders features in the red, green and blue range almost invisible, while yellow and
cyan features are shown in great contrast. Moreover, it uses all primary colors and varies in lightness
across its value range, which makes it unsuitable for printing or viewing with color vision deficiencies.
Clearly, this is suboptimal for displaying STFT phases.

Since HSV is so obviously inadequate for STFT phases, most publications instead use a linear
color map for displaying phases. This, however, introduces a sharp transition between “maximal”
and “minimal” phase values, making the graphs harder to read, and putting undue emphasis on this
transition. Figure 5.16 shows the cyclical but non-uniform color map HSV, the linear and uniform
viridis, and the cyclical and uniform Twilight, which was designed as part of this work.

To remove the sharp transition between maximal and minimal values, a well-behaved circular
color map should use a linear, brightness-scale color map for the value range between 0 and m, and
the reverse for m to 0. This would accurately reflect the cyclical nature of phases, without any sharp
transition. To remove the resulting ambiguity between the two halves of the unit circle, they should
use colors of equal visual weight (lightness), but different hues [81].

Twilight was designed in the CIELAB color space, a color coordinate space that approximates
human vision. In this representation, points of equal distance have equal visual contrast. Perceptual
uniformity can therefore be ensured by designing the color map along points of constant distance. The
color space represents color values in three coordinates: The lightness axis L* scales from pure black
at L* = 0 to pure white at L* = 1, while the two color axes a* and b* represent gray as a* = b* = 0,
and green-red components as negative and positive values in a*, and blue-yellow components in b*.

Figure 5.17 shows Twilight’s color progression in the a*/b* hue plane and along the L* lightness
axis. In lightness, Twilight falls from off-white to off-black between 0 and =, then rises back to off-
white at 27. To differentiate the falling side from the rising side, they trace through red and blue,
respectively. However, by ensuring that the rising and falling sides are exactly symmetrical in lightness,

8https://matplotlib.org/tutorials/colors/colormaps.htmliicyclic
9https://de.mathworks.com/help/matlab/ref/hsv.html
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Figure 5.16: Color maps used for displaying cyclical data. This work introduces and uses Twilight.

both sides have equal visual weight. Red and blue were chosen as they remain discernible even with
most color vision deficiencies.

The perceptual deltas in the bottom part of Figure 5.17 show the distance between Twilight’s
color coordinates in CIELAB, and therefore an approximation of perceptual contrast. The symmetric
lightness scaling between the first and second half of the color map introduces conspicuous low-contrast
regions at the lightness reversals near 0 and m. The lightness reversals themselves are a necessary
feature of a lightness-scale circular color map, as detailed earlier. To soften the L * reversals somewhat,
color coordinates were smoothed near the lightness reversals [81].

A slightly increased visual weight of the mostly-black and mostly-white regions remains near 0
and 7 in Twilight. However, this can in fact be advantageous for STFT phases, as areas of zero
phase are often of particular importance and worth emphasizing a little. For this reason, slightly non-
uniform lightness-scaling was deemed superior to an alternative design that uses perfectly uniform
equal-lightness hue-scaling for visualizing STFT phases.

Figure 5.18 shows the color map with various simulated red-green vision deficiencies and in
greyscale, for printing. By choosing colors outside of the red-green range, Twilight degrades with-
out artifacts for most kinds of vision deficiencies. In greyscale, the ability to discriminate between the
two halves of the unit circle is lost, but no further artifacts are introduced, and the two halves remain
perfectly symmetrical.

In summary, Twilight is a perceptually uniform color map for cyclical phase data, much like Viridis
and Parula are for ratio-scale data, designed according to the best practices published by [81].
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neighboring points in full color and greyscale. Left side shows Twilight’s lightness progression and
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Figure 5.18: Twilight with various degradations: simulated red-green color vision deficiencies (bottom

four graphs) and greyscale printing.



Chapter 6

Spectral Derivatives

Speech is a dynamic signal that is constantly changing over time and frequency. Signal parts span
continuous areas of time and frequency, and with smooth transitions in both dimensions. It should
therefore be no surprise that a great deal of information is encoded not only in steady-state sections
of STF'T spectra, but also the rates of change, or derivatives, of those spectra.

Well-known instances of such interesting derivatives are group delay and instantaneous frequency,
which are loosely defined as the frequency and time derivatives of the phase spectrum, respectively.
Group delay and instantaneous frequency can be interpreted as the time and frequency offset of the
signal part that dominates a particular STFT bin. This offset information can be used to reassign the
spectral energy to dominant transients as a way of sharpening spectral features [39, 116, ch. 5].

Perhaps more importantly, phase derivatives are a convenient way of side-stepping phase ambigu-
ities due to wrapping and windowing delays. They are thus a particularly legible variant of STFT
phases, which will be used in Chapter 8 to find harmonic structures in STFT phases.

Derivatives are not only useful for STFT phases, but for magnitudes as well. However, this
information has historically found little application, although many of the phase derivations’ uses
could be implemented with magnitude derivatives as well. Reassignment, in particular, could just
as well be implemented by hill-climbing magnitude derivatives, if a suitably smooth window function
were used.

On the topic of window functions, much of the interpretation of STFT derivatives hinges on the
choice of window functions, which govern both the slopes of the magnitude, and the clarity of phase
derivations. Section 6.3 delves more into detail on this topic and the various interpretations of STFT
derivatives. In general, the Hann-Poisson window with its smooth slope without intermittent zeros is
a good choice for calculating STFT derivatives.

The following two sections 6.1 and 6.2 explores in detail two ways of calculating spectral derivatives,
and their respective strengths and weaknesses.

6.1 Difference Method

A simple and straight-forward way of calculating spectral derivatives is the logarithmic magnitude
and phase difference between neighboring STFT bins. While conceptually simple, the choice of time
step At and frequency step Af needs to select bins that are part of the same slope in order for the
difference method to be meaningful. This often requires oversampling in time or frequency to obtain
useful results.

92
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Figure 6.1: Derivatives of the STF'T magnitude of a sinus at 1000 Hz and a delta impulse at 0.75 s
analyzed with the Hann-Poisson window. Scaled to dB per f:/2 and dB per 2N/y_; respectively.

Magnitude Derivatives

Both the STFT magnitude and its derivatives are most useful in the logarithmic domain, where signal
spectra mix additively. Thus, to calculate the STFT magnitude derivatives, the difference is calculated
between logarithmic magnitudes Syp(t, f) = 201log,, [S(t, f)|:

Bt S L (st + 50— Suplt = 50 p) (6.1)
ASt, A A
dABSff) _ Alf(sdB(t, I =) (6.2)

Neighboring STFT magnitude bins are usually smooth enough to be used for calculating magnitude
frequency derivatives, as STFT magnitude spectra are already smoothed by windowing. Regardless,
both time and frequency derivatives benefit from a smooth window function without zeros, such as
the Hann-Poisson window.

Figure 6.1 shows magnitude derivatives of the sum of a sine and click signal. Graphs of these simple
signals are provided here as a guide to how the derivatives represent common signal components, so
as to help in interpreting more complex graphs later on.

In the frequency derivatives, sinusoids are represented as rising slopes towards the sinusoid’s fre-
quency and falling slopes thereafter. White components such as clicks do not have any frequency slope
and are therefore zero. In the time derivative, clicks are represented with similar positive-negative
ramps and sinusoids are zero.

Phase Derivatives

Phase derivatives are particularly interesting as they have a simple interpretation that is not obvious
for the phase spectrum itself. Considering a sinusoidal signal component

s(t) = etf?,

whose phase is accordingly
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Figure 6.2: Derivatives of the STFT phase of a sinus at 1000 Hz and a delta impulse at 0.75 s analyzed
with the Hann-Poisson window. The time derivative is clipped at 1000 Hz for readability, but truly
extends linearly to f:/2. Instantaneous frequency in Hz, group delay in s.

éSs(t) (t7 f) = fta

and the derivatives are f and ¢, respectively called Instantaneous Frequency and Group Delay.

To calculate phase derivatives from STFTs, phases of neighboring STFT bins must differ by less
than 27 to avoid phase wrapping ambiguity. This can only be assured if the time delay At is one
sample and the frequency delay Aw is one bin.

BESUD) - L(ss+ B - 25— ) (6.3)
Ali;t’ﬁ - Alf (45(1,, f+ %) — ZS(t, f - %)) (6.4)

Figure 6.2 shows the instantaneous frequency and group delay for a sinus and click signal, scaled
to Hz and seconds, respectively.

The instantaneous frequency represents sinusoids as linear ramps in the frequency direction, with
a zero crossing at the sinusoid’s frequency. Clicks are represented as zeros. The group delay represents
clicks as linear ramps in the time direction with a zero crossing at the click’s time, and sinusoids are
zeros. This is exactly the opposite in the magnitude derivatives.

Both the instantaneous frequency and group delay are still phase differences that wrap at 27. At
one sample time delta, 27 corresponds to fs/2 and at one bin frequency delta it is V/2, and therefore
does not occur for steady signals such as the click and sinus in Figure 6.2.

However, larger At or A f might be desirable for additional robustness to small signal disturbances
such as noise, which would introduce phase wrapping. For speech signals with base frequencies > 80 Hz,
care should be taken that no wrapping occurs between neighboring speech harmonics by restricting
At to At < 80-Nprr/r . To restrict wrapping to frequencies > 4000 Hz, A f should likewise be limited
to Af < 4000/, s,
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6.2 Window Method

Instead of relying on differences between STF'T bins for calculating spectral derivatives and dealing
with the phase wrapping ambiguities, the derivatives can instead be calculated directly for each bin [92,
78]. This neatly sidesteps all wrapping issues but can require more computation and does not have
the option of using longer step sizes.

Time Derivative

Given that the definition of the Fourier transform in Section 5 as

S(t, f) = / s(n) - w(n —t)e~2™/ndn (6.5)

references the time index ¢ only in the window function w(n — t), its time derivative need only be
applied to the window function as well:

d

aS(t,f) = /_Oo s(n) - %w(n —t) e 2mindp. (6.6)

Thus the derivative of the spectrum can be derived merely by replacing the window function w(n)
with its time derivative $w(n).
The spectrum derivative decomposes into its magnitude and phase components as

d d ,
5. =2 (18 pl-eesen) (6.7)

d . d .
= IS( )| SN S (t, )] i £ ) eS0T, (6.5)

Dividing by S(t, f) removes the exponentials

G500 _ &St Nl d
s~ swp iaes ) (6.9)

and thus gives the time derivative of the phase spectrum as

d 5 f)
—/ —g | =227/ .1
and time derivative of the magnitude spectrum as
st )1 = 156, ) -on ) (6.11)
de'™ AT S, f) )’ ‘

where J(-) and PR(-) extract the imaginary and real part of a value, respectively.

However, the interesting part is the derivative of the logarithm of the magnitude spectrum. Since
the derivative of the logarithm of a function is the derivative divided by the function, this can be
calculated as

d LS Nl (&S )
& toglsie, ) = HOED (dsw, J ) | (6.12)
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Frequency Derivative

The frequency derivative of the Fourier transform references f only in the exponential, and can thus
be applied to the exponential only:

d > d .
ES(t, f)= /oo s(n)-w(n—t) - d—fe’%f”dn (6.13)
= /00 s(n) - i2mnw(n —t) - €27 Mdn (6.14)

where, again, the derivative is accomplished merely by replacing the window function w(n), this
time with i2mnw(n).
Following the same line of reasoning as the time derivatives, this gives

d 1 (@St
d745(t,f) =% (S(t,f) ) (6.15)
and
=8, f
jf log (1, /)| = 52 (dj;(t(f))) (6.16)

Figure 6.3 shows the magnitude and phase derivatives of the same sine-and-click signal as in the
previous chapter using the window method. These graphs are almost identical to the derivatives using
the difference method. However, the window method is an instantaneous measure of each STFT bin,
whereas the difference method is calculated over a small time/frequency delta. Depending on the
scale of the signal part to be analyzed, either method can be useful: Larger structures, especially in
the presence of noise, are often more visible with a slight averaging imposed by larger time/frequency
deltas and the difference method, while smaller structures are better resolved with the window method.

6.3 Applications

It is safe to say that the majority of all speech processing algorithms focus on rough shapes within the
STFT magnitude. There are long-running arguments about the usefulness of additional data, such
as STFT phases [113, 114, 91] or high-resolution spectra [8, 121, 34, 170, 157]. Yet without a doubt,
there is additional information stored in phase data, as without it, no exact recreation of a speech
signal is possible.

Part of the problem with interpreting phase data, and details within the STFT magnitude is a lack
of visualization tools to make sense of them. In particular, phase spectra without frequency-shifting to
the window center and with window spectra full of zero crossings are full of distracting phase reversals
that can make it difficult to understand their content. Phase derivatives are a way of mitigating these
issues; by focusing on the differences between neighboring STFT bins, many effects of phase wrapping
and zero crossings can be glossed over.

Figure 6.4 shows such magnitude and phase derivatives for the same speech signal as the introduc-
tory Figure 5.1. All the features of the STFT magnitude are clearly visible in the derivatives as well:
Onsets and offsets as vertical red or blue bands in the magnitude time derivative or phase frequency
derivative, and sinusoids as horizontal red or blue bands in the magnitude frequency derivative or
phase time derivative.
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Figure 6.3: Time derivative (left) and frequency derivative (right) of the STFT magnitude (top)
and STFT phase (bottom) of a delta impulse and a sinus STFT analyzed with the Hann-Poisson
window. The time derivative is clipped at +1000 Hz for readability, but truly extends linearly to f/2.
Instantaneous frequency in Hz, group delay in seconds. Magnitude derivatives in dB per f:/2 and dB

per 2N/f, .

Additionally, phase derivatives have a clear interpretation as the time and frequency origin of an
STFEFT bin’s energy. Due to smearing and windowing, a signal component’s energy is spread over
multiple STFT bins. Energy is spread over time as multiple blocks sample sections of each signal
component, attenuated by the window shape. Energy is spread over frequency as signal components are
convolved with the window spectrum. While these smearing operations generally alter the component
magnitude, its phase will still rotate with the original frequency and can be recovered from the phase
time derivative. The precise moment of a click is similarly smeared across STFT time but can be
recovered from the group delay. This information can also be used to reassign these components back
to the original time/frequency location. In a similar way, phase derivatives are frequently used to
increase the precision of magnitude spectral maxima [36, 34, 92, 121].

Phase derivatives can also be used as a signal feature in their own right. Figure 6.4 shows the
instantaneous frequency and group delay of a speech signal, and clearly shows speech harmonics in the
magnitude frequency derivative and instantaneous frequency as horizontal red-and-blue bands. This
has been of particular use for fundamental frequency estimation [38, 20] and speech enhancement [82].

Figure 6.5 shows a shorter section of voiced speech in greater detail. The graphs show how the
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Figure 6.4: Time derivative (left) and frequency derivative (right) of the STFT magnitude (top) and
STFT phase (bottom) of a speech signal STFT with the Hann-Poisson window. The time derivative
is clipped at +£100 Hz for readability, but truly extends linearly to f:/2. Instantaneous frequency in
Hz, group delay in seconds. Magnitude derivatives in dB per f:/2 and dB per 2V/y,.

STFT magnitude shows harmonics as a comb-like pattern of maxima, whereas the instantaneous
frequency shows harmonics as a sawtooth-like pattern of negative-to-positive ramps around each har-
monic. The window method shows more time detail, but is more susceptible to small noisy disturbances
than the difference method.

Magnitude derivatives have not found much application in signal processing, yet. But since their
shape is very similar to phase derivatives, they could be used in a similar way for reassignment!, or
indeed for reconstructing missing phase data.

Lsince exact time/frequency offsets are difficult to obtain from magnitude derivatives, iterative hill-climbing would

have to be used instead.
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Figure 6.5: Harmonic patterns of a speech signal in the STFT magnitude (top), instantaneous fre-
quency with the difference method at At = 100/¢ (center), and instantaneous frequency with the
window method. Overlayed on top are black graphs of single spectra at 0.975 s, 1.0 s, and 1.025 s (not
to scale, not in dB in case of magnitude STFT).



Chapter 7

Conclusions

This chapter introduced the basic mathematical and visual framework used throughout this disserta-
tion for analyzing audio signals. Just as speech itself is a complex signal with many a different facet,
so its analysis must also be done from multiple different viewpoints to obtain a complete picture.

The foundation of most of these perspectives is the short-time Fourier transform, an ingenious
way of unfolding signals across time and frequency, and of revealing patterns otherwise hidden in their
interplay. While not entirely unlike our own perception of speech as patterns both rhythmic and tonal,
the STFT’s true strength is how its many parameters can be adapted for the various challenges of
speech analysis.

The STFT window function, in particular, plays a pivotal role in determining the kinds of features
that can be easily resolved. For STFT magnitudes, a closer look was taken at the Hann window,
which represents a reasonable trade-off between time and frequency resolution. For the phase domain,
a different kind of window was found desirable that does not include phase reversals, in the form of
the Hann-Poisson window.

To make these tools available to researchers, they must be mapped onto a representation that can
be reasoned about visually. However, the human visual system is no less complex than its auditory
side, and visualizations must therefore be constructed with just as much care as audio signals to avoid
misinterpretations and biases. While these ideas have lead to the development of new, perceptually
motivated color maps for STFT magnitudes in recent years, the same had not yet been done for STFT
phases. This was resolved by introducing a new, perceptually uniform color map for STFT phases.

But windowing and visualization techniques only make visible the core of the problem with in-
terpreting STFT phases: that its phase angles are circular in nature and cannot be visualized or
reasoned about the same way as scalar magnitudes. To make sense of STFT phases, the notion of
spectral derivatives was introduced in two variants. In the derivatives, at last, phases reveal some of
their patterns to observers and algorithms. Surprisingly, these derivation techniques proved useful not
only for phase angles, but for STF'T magnitudes as well.

Thus we now have assembled a toolbox of techniques and interpretations for the following chapters.
Where all previous discussions focused on theory and simple examples, we can now turn to the real
world and start solving concrete problems, chiefly among them the analysis of speech signals and the
search for its pitch.
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Part 111

Estimating the Fundamental Frequency
of Noisy Speech

Wherein we introduce our first major contribution: An
algorithm for estimating the fundamental frequency of voiced
speech. This algorithm combines features from the magnitude
spectrum and the phase spectrum into a voicing activity measure
that gives an a posteriori probability for whether a block of audio
data is voiced at a given candidate fundamental frequency. In
contrast to similar algorithms, this is a true probability that can
reject or accept any candidate frequency. Our algorithm can
thus reject ambiguous estimates where simpler algorithms would
mis-estimate instead.

A thorough evaluation section analyzes our algorithm’s
performance with an uncommonly large dataset of speech and
noise recordings, and in comparison with notable reference
estimators. We learned from this study that comparisons are
surprisingly difficult. A large part of the remainder of this
dissertation is motivated from this issue and will expand on the
intricacies and problems of comparing fundamental frequency
estimation algorithms, and how to judge the accuracy of their
estimates.
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Chapter 8

A Fundamental Frequency Estimation
Algorithm

Abstract

The fundamental frequency of the human voice is an important feature for various speech processing
applications such as speech enhancement, speech separation, and speech compression algorithms. This
chapter presents an algorithm that probabilistically combines features from the magnitude spectrum
and the phase spectrum. It then derives a direct pitch confidence measure, which avoids both oc-
tave errors and ambiguous estimates. The algorithm estimates relatively few frames as voiced, but
remains reliable even with high levels of noise. These characteristics are examined with synthetic tone
complexes and a large, freely available corpus of speech and noise recordings.

8.1 Introduction

Speech and language are fundamental to human communication. It encodes information as rapid
sequences of sounds that are produced by acoustically exciting the vocal tracts. If this excitation is
periodic, it produces a characteristic sound that we call the human voice [131]. This sound can vary
in its intonation and pitch within a certain range of spectral envelopes and fundamental frequencies.
Despite humans’ ease in identifying and characterizing this sound, technical analysis remains difficult.
Speech analysis is thus still an active area of research, with various applications such as speech en-
hancement, speech compression and modification, and the musical analysis of singing voices [21]. This
chapter presents a new algorithm for estimating one of the defining properties of the human voice: its
fundamental frequency.

We perceive short segments of the human voice as having a single pitch, but their spectra are
made up of a series of harmonically related frequencies, each at an integer multiple of a fundamental
frequency. This regular pattern is used for algorithmically detecting voiced speech, and for estimating
its fundamental frequency. It is detectable in the frequency domain as evenly spaced tonal components,
or in the time domain as a regularly repeating waveform.

In the time domain, such repetition can be detected by comparing short signal blocks at different
starting times and estimating the fundamental frequency as the inverse time difference between two
matching blocks [21]. This method has been implemented in a number of pitch estimation algorithms
(or pitch determination algorithms, PDAs), which typically use variants of correlation [140] or differ-
ences [130] for comparing signals. Improvements include various pre- and post processing steps and
machine learning techniques for improving pitch tracks [9, 150, 42, 24], and joint estimation in multiple
frequency bands [65, 86, 151], where even non-harmonic signals at low signal-to-noise ratios (SNR)
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remain locally periodic.

In the frequency domain, the fundamental frequency of the human voice can be estimated by
comparing comb-like spectral templates at various fundamental frequencies with the short-time signal
spectrum, and selecting the best match [106]. However, in real voice recordings, windowing and
minute pitch shifts distort spectral peaks around the true comb pattern. More recent algorithms
account for such inaccuracies by replacing the Dirac comb teeth with wider peaks [94]. Further
improvements include various pre-processing steps and machine learning techniques for improving
pitch tracks [73, 22, 50]. A separate branch of research derives their models directly from a theoretical
signal model [126, 21, 104, 51] and confirms that comb-like patterns are indeed optimal for detecting
pitched signals in noisy magnitude spectra.

However, both spectral combs and temporal self-similarity detect not only the fundamental fre-
quency itself, but also higher and lower harmonics. This can lead to octave errors in the estimated
pitch. Some algorithms suppress these errors by inserting negative comb teeth between the positive
harmonic comb teeth, so that correlation maximizes the harmonic energy and simultaneously mini-
mizes the subharmonic energy [149, 45]. Nevertheless, octave ambiguity is an inherent property of
periodic signals in the time domain and the magnitude spectrum.

Some signal representations do not exhibit any octave ambiguity. One such representation is the
phase spectrum and its derivatives, where harmonics are easier to separate from non-harmonic noise.
As such, phase spectrum derivatives have been shown to be a meaningful representation of the human
voice for pitch estimation [38, 114, 20]. However, the phase spectrum does not contain any loudness
information, which makes fundamental frequency estimation susceptible to noise, and voice activity
determination (VAD) difficult.

When comparing pitch estimation algorithms with human hearing, neurological research shows
that human perception of sound integrates data from multiple domains that include information from
both the magnitude spectrum and the phase spectrum, as well as numerous other sources [99, 160, 98,
54, 111]. In algorithmic terms, this indicates that combining PDAs from different domains could lead
to higher estimation accuracy, particularly in the presence of noise.

The results of a PDA will depend critically on which parts of the speech are assumed to be pitched.
It is therefore necessary to include or reference a VAD algorithm. When many speech parts are
accepted as voiced, errors in pitch determination can be expected to be higher than when only the
most salient voiced speech parts are selected.

Typically, these VAD algorithms use a different combination of features than the associated
PDAs [93, 58, 150, 151, 42, 45]. This can be a problem for voiced signals with no unambiguous
fundamental frequency, as in the presence of multiple pitches or fricatives. The accuracy of fundamen-
tal frequency estimation could therefore be improved if the VAD excluded not only unvoiced speech,
but ambiguous estimates in general.

Today’s state-of-the-art PDAs for human voices as outlined in the comparison studies [3, 151, 45,
50, 148, 51] favor estimators in either the time domain or the magnitude frequency domain with sep-
arate VAD algorithms such as YIN [24], PEFAC [45], RAPT [150], or MBSC [151]. Our proposed
algorithm improves on this by combining multiple signal representations for both fundamental fre-
quency estimation and VAD. As we will demonstrate, our VAD only selects unambiguously voiced
speech, and thus produces sparse but highly reliable fundamental frequency estimates.

The following chapter will present a pitch estimation feature in the magnitude spectrum, followed
by a feature in a derivative of the phase spectrum, and finally a method for combining these measures
into a pitch confidence measure. All of these features will be illustrated with a simple, clean speech
recording, whose spectrogram and fundamental frequency track is shown in Figure 8.1. The chapter
will end with some notes on implementation. The next chapter will evaluate various aspects of this
algorithm with real speech and noise recordings, and synthetic tone complexes in white noise, and
discuss the results with respect to the aforementioned reference PDAs. Finally, this chapter will
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Figure 8.1: Magnitude spectrogram of a clean speech signal that will be used repeatedly for examples.
The fundamental frequency is visible as the lowest sinusoidal track, and harmonics are visible as
parallel tracks. A fundamental frequency estimate is highlighted as an outlined white line.

conclude with a summary of our main findings.

8.2 Proposed Algorithm

As outlined in the introduction, both the magnitude and phase spectrum can be used to estimate the
fundamental frequency of the human voice. Indeed, a combination of these two signal representations
seems advantageous in several ways: It uses more of the available information in the signal, and it can
use phase spectral information to account for octave ambiguities in the magnitude spectrum. Finally,
it can use the magnitude spectral information to help the phase spectrum discern salient parts from
non-salient ones.

The presented algorithm integrates data from the short-time magnitude and phase spectrum, and
is henceforth called MAPS, the Magnitude and Phase Spectrogram based fundamental frequency es-
timator. It implements an a posteriori combination of two features: A soft comb in the short-time
magnitude spectrum, and a sawtooth-comb in the time-derivative of the short-time phase spectrum.
The resulting pitch confidence measure inherently not only estimates the most probable pitch of each
frame, but also provides a measure of confidence in that estimation, which excludes ambiguous esti-
mates. This comparatively conservative approach to VAD makes the algorithm highly precise!, albeit
at the cost of its recall?.

8.2.1 Voice in the Magnitude Spectrum

The fundamental frequency and every harmonic in a voiced tone complex create peaks in the magnitude
spectrum, forming a comb pattern with comb teeth at regular intervals. In the short-time Fourier
transform, each signal block is weighted with a window function, and consequently each short-time
spectrum is convolved with the window’s spectrum. The one-sided template magnitude spectrum 7'
of an ideal harmonic tone complex with partials at integer multiples of the fundamental frequency f,
can thus be described as

IPrecision is “how many VAD-positive estimates are truly pitched?”
2Recall is “how many truly pitched values are VAD-positive?”
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oo

M(f, fo) = W(f=p-fo), (8.1)
-1

p

where p is the partial index, and W ( f) the spectrum of the time domain window with its maximum
at W(f=0).

For speech processing, a typical window function is the Hann Window, whose Fourier transform
is [68]

1 1 fs 1 fs

WHann(f) = §WRect<f> - 7WRect(f - 7)7 (82)

N
with f, being the sampling rate and

sin ((N + 1)77%5)

sin(wfis)

WRect(f) = e_iNﬂF% '

(8.3)

This template spectrum T™ correlates perfectly with a pure harmonic tone complex at its funda-
mental frequency. However, it also correlates strongly with each harmonic of the tone complex. To
mitigate these octave errors, the template should not only correlate positively with harmonics, but
additionally correlate negatively with subharmonics. This was accomplished by subtracting the tem-
plate mean, which inserts shallow negative valleys between the sharp positive comb peaks. Since the
template spectrum is now zero-mean, this has the additional benefit of making the correlation sum
invariant to the number of comb teeth (i.e. fundamental frequency). Furthermore, a low-pass filter at
1000 Hz is introduced, since physical speech contains mostly low frequencies. The complete template
spectrum for realistic voiced speech is then

TY(f, fo) = H(f) - (TM(f,fo) - ;ZTM(f, fo)) : (8.4)
s 77

where HEP(f) is the spectrum of a low pass filter with 24 dB per octave, similar to the low pass
shape of a long-term average speech spectrum [17],

1 for f <1000 Hz

) 8.5
10710g2(%)24% for f > 1000 Hz. ( )

HLP(f)Z{

Figure 8.2 shows graphs of the template TW( f, fo) for two fundamental frequencies. Since each
template’s mean is zero, its power is constant across fundamental frequencies.

To compare the template with speech data, the absolute short-time magnitude spectrum M (¢, f)
of the block at time ¢ is correlated with a set of template spectra at various candidate f,. This results
in the magnitude domain feature

(1 fy) = corr (M0, ), T, ) (2) 7 (5.6)
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Figure 8.2: Templates for the magnitude spectrum for voiced speech at two typical fundamental
frequencies of male and female speakers. Each template is a zero-mean comb with positive peaks at
harmonics and negative troughs at subharmonics. High frequencies are attenuated, much like human
speech.

where corr(-) denotes correlation and the last term weighs each frequency logarithmically, to em-
phasise the lower frequencies, where most voiced speech energy is concentrated by a local disturbance
such as colored noise or a highpass filter.

Figure 8.3 shows FM (¢, f,) for the same clean speech signal as in Figure 8.1 for fundamental
frequencies between 80 Hz and 450 Hz and 1024 point spectra for 30-ms signal blocks with 90 %
overlap at a sampling rate of 48 kHz. The magnitude feature F (¢, f,) is maximal at the fundamental
frequency of the speech signal. Additional minor maxima are visible at each harmonic frequency. Thus,
in this example, the fundamental frequency can be estimated without octave errors, but errors should
seem likely if the fundamental were corrupted.

8.2.2 Voice in the Phase Spectrum

The phase spectrum itself does not show any obvious patterns indicative of human voice. However,
there are variants of the phase spectrum that do show such patterns, such as its time derivative. The
time derivative of the phase spectrum is commonly known as the instantaneous frequency (IF) [143]

This dissertation takes the somewhat unusual interpretation of phase spectra, where spectra are
phase-shifted to the window center, as discussed in Equation 5.4 on page 35. This results in the
IF representing a region dominated by a sinusoid as a linear frequency ramp that crosses zero at the
frequency of the sinusoid, where a non-shifted IF would be equal to the sinusoid frequency modulo some
phase wrapping constant. Our “unwrapped” IF is otherwise known as the instantaneous frequency
deviation (IFD) [143, 83].

The phase spectrum in general is very sensitive to the STFT window function. Phase jumps in
the window spectrum lead to destructive interference, which can hamper interpretation of the phase,
as seen in Figure 5.11 on page 45. It is therefore advantageous to use a time window that does not
contain any zeros in its spectrum, such as the Hann-Poisson window [139].

Figure 8.4 shows the IF and magnitude STF'T of a speech signal. The comb-like magnitude pattern
is clearly visible in the magnitude STFT. In the IF, the same signal produces a sawtooth-like pattern
of repeating negative-to-positive ramps with one tooth per sinusoid. This pattern can be used to
match voiced harmonic tone complexes in the IF, much like the comb pattern of the previous chapter
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Figure 8.3: Magnitude domain feature for the same short, clean speech signal as in Figure 8.1, for
candidate fundamental frequencies between 80 Hz and 450 Hz. The feature is maximal at the funda-
mental frequency between 100 Hz and 200 Hz, but octave ambiguities are clearly visible as parallel
lines.

was used to match speech magnitude spectra.
Figure 8.5 shows the IF template T (f, f,) for harmonic tone complexes,

0 forf<%

f— [fio—‘ - fo otherwise, (87)

TIF(f: fO) = {

¢

where the first term excludes the “zeroth” half-wave below the fundamental frequency, and the
second term defines a linear positive-to-negative ramp around each partial frequency. The |-] operator
denotes rounding to the nearest integer.

To compare the template spectrum with speech data, a set of phase domain templates at different
candidate f, is subtracted from the IF spectrum IF (¢, f) = IF(¢, 5=) of the block at ¢. This results in
the phase domain feature

2.f
Fe
PG, ) = F( )~ 5 o)l () (53)
where the last term weighs each frequency logarithmically as in Equation 8.6. In contrast to the
magnitude template, both the IF and the IF template are naturally zero-mean, and does not need to
compensate for variations in difference between candidate fundamental frequencies.

Figure 8.6 shows F'¥(t, f,) for a clean speech signal for fundamental frequencies between 80 Hz
and 450 Hz and 1024 point spectra for 30-ms signal blocks with 90 % overlap at a sampling rate of
48 kHz. It can be seen that F'F (¢, f,) is minimal at the fundamental frequency of the speech signal.
Additional minima are visible in speech pauses, but no octave ambiguities are present.

8.2.3 Combination of Features

The previous two sections introduced two features for estimating the fundamental frequency of human
voices. It was shown that both features have certain ambiguities: the magnitude feature is susceptible
to octave errors at integer multiples of the fundamental frequency, while the phase domain feature
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Figure 8.4: IF (left) and magnitude STFT (right) of a voiced speech signal. The IF represents
sinusoids as linear negative-to-positive ramps with the zero crossing at the sinusoid. The magnitude
STFT represents sinusoids as maxima. The graphed IF uses the Hann-Poisson window, the magnitude
STFT the Hann window.

shows spurious minima during silent passages. Since these error modes can never happen at the same
time, a combination of both features should avoid both errors.

According to Bayes’ theorem, a combined a posteriori probability for voicing P(voice|F™¥ (¢, f,),
FM(t, f,)) can be derived from a prior probability of voicing P(voice), a marginal likelihood of magni-
tude and phase-feature values P(F' (¢, f,), FM(t, f,)), and a likelihood of feature values within voiced
data P(F™(t, fy), FM(t, f,)|voice):

Fc(t7 fO) =P(VOiC€|FIF<t, fO)?FM(tv fO)) (89)
_ P(voice) - P(F(t, fy), F (1, fy)|voice)
P(FIF(t’ f0>7 FM(ta fO))

Each of these probabilities® was calculated as a histogram from a large database of speech
recordings with known fundamental frequencies mixed with various noises. The histogram used
20 equally-spaced bins within the 1-99 percentile of both dimensions. FM (¢, f;) and F™Y (¢, f,)
were calculated for 200 f, for each test sample, and marked woiced if they were the closest f,
to the true fundamental frequency according to the dataset’s ground truth. The prior probabil-
ity P(f,) is then the ratio between the number of voiced f, and all f,. The marginal likelihood
P(F™(t, f,), FM(t, f,))) is the 2D histograms of all combinations of F'¥' (¢, f;) and FM(t, f,), and the
likelihood P(F™ (¢, f,), FM(t, f,))|voice) is the 2D histogram of all voiced combinations of F (¢, f,)
and FM(t, f,).

However, the resulting posterior probability of voicing F¢(t, f,) only covers combinations of
FM(t, fy) and F¥(¢, f,) that were found in the training data. To reduce the influence of random
variations, the histogram was smoothed with a gaussian kernel with ¢ = 3. High-value histogram bins
that were not found in the training data were filled by extrapolation towards high F* (¢, f,) and low

(8.10)

3A more correct term would be “frequencies”, from the frequentist interpretation of Bayes’ theorem, but we use the
term “probabilities” to avoid ambiguities with signal frequencies.
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Figure 8.5: IF templates for voiced speech for two typical fundamental frequencies of male and female
speakers. Each template is a sawtooth comb with zero crossings at harmonic frequencies.

F™(t, f,). The pitch confidence can be seen in Figure 8.7, together with the decision threshold for
the voicing decision. It will henceforth be called pitch confidence, since it measures the probability
of estimating a correct fundamental frequency, instead of the more common maximum likelihood fun-
damental frequency. This allows the pitch confidence to be used as both PDA and VAD, instead of
typical VADs based on features external to the PDA.

Figure 8.7 shows that bins are classified as voiced if FM(t, f,) is high and F (¢, f,) is low. If
the voicing decision were based on either feature on its own, it would have to include an area of low
FM(t, fy) or high FI¥(F,), and thus false positives. This confirms the earlier statement that each
feature suffers from ambiguities that are absent when combined.

We used clean speech recordings from the pitch tracking database of the Graz University of Tech-
nology (PTDB-TUG) [120] and natural noise recordings from the Queensland University of Technology
noise database (QUT-NOISE) [25] to calculate the pitch confidence. Both databases are freely avail-
able under open licenses. The speech recordings were split into a 60 % training set, which was used for
the above calculation, and a 40 % test set, which was used for the evaluation below. Speech and noise
were mixed with SNRs* ranging from -20 dB to 20 dB. In total, 50 repetitions with random speech
recordings x 22 noise types at random starting times x 9 SNRs = 9,900 combinations of signal and
noise were used to calculate the pitch confidence FC (¢, f,).

Figure 8.8 shows the pitch confidence for a clean speech signal. In comparison to Figure 8.3 and
8.6, there are no octave ambiguities as were in the magnitude domain and no spurious minima in quiet
parts as were in the phase domain, and the fundamental frequency track stands out prominently.

Finally, the estimated fundamental frequency track fo , 1s calculated by Viterbi-searching F U, fo)
for a track that maximizes F(t, f,) and a transition probability between consecutive fq:

fo, = argmax (FC(t, fo, ) - 7(fo, 1. fo)- FO(t. fy)) (8.11)
forfo,q

where 7(fy; 1, fo4) is a transition probability from fundamental frequency fy, ; to fy, which
penalizes large frequency jumps in order to create a smoother track with fewer disturbances. The
transition probability was set to be proportional to the frequency quotient

4SNR calculated only from active speech segments, not pauses or leading/trailing silence.
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Figure 8.6: Phase domain feature for the same short, clean speech signal as in Figure 8.1 for candidate
fundamental frequencies between 80 Hz and 450 Hz. The feature is minimal at the fundamental
frequency between 100 Hz and 200 Hz but varies with signal level.
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Figure 8.7: Pitch confidence FC(t, f,) for various combinations of the magnitude domain feature
FM(t, f,) and the phase domain feature F'F (¢, f;). Only samples that have both high FM(¢, f,) and
low F'(t, f,) exhibit a high pitch confidence. The graph area spans all feature values in the 1-99
percentile of the training data. Note that the magnitude domain feature is a correlation between
spectral magnitudes and a real-valued template, which can be negative. The phase domain feature is
an absolute difference, which is always positive.
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Figure 8.8: Pitch confidence for the same short, clean speech signal as in Figure 8.1 for candidate
fundamental frequencies between 80 Hz and 450 Hz (top) and resulting estimated fundamental fre-
quency track (bottom). Pitch confidence is maximal at the fundamental frequency between 100 Hz
and 200 Hz. The artifacts from both Figure 8.3 and 8.6 are markedly reduced, and the fundamental
frequency track is sharply defined. The fundamental frequency track excludes F¢ < 0.5 and the
spurious maxima near 1.4 s.

T(fO,tflafO,l) = min(fo,lfhfO,l)/maX(fO,tflv fo,t>- (8.12)

The Viterbi search is typically implemented with a dynamic programming algorithm that searches
for the globally optimal path through F(t, f,) from back-to-front and automatically finds the optimal
start and end point.

The estimated fundamental frequency of frame at time t is then fo ;» and its pitch confidence is

accordingly F¢(t, fo t). The resulting pitch track can be seen in the bottom panel of Figure 8.8.

A meaningful voicing decision can be made at F¢(t, fo 1t) > 0.5, where the probability of voice
becomes greater than its inverse probability of non-voice. Note that this criterion does not estimate
the probability of general voice activity within a frame, but the specific confidence that a pitch can
be estimated accurately at the current frame.

8.2.4 Implementation and Parameters

In order to be able to compare the template spectra with real spectra in a computer program, a
minimum frequency resolution is required. The comb-like pattern of the magnitude template needs
at least two bins of separation between neighboring sinusoids. The sawtooth-like phase template can
only be found with at least three bins per sinusoid. For typical human voices with fundamental
frequencies as low as 80 Hz, and a sampling rate of 48 kHz, this requires an FFT length of at least
48000 Hz / SOTHZ = 1800 samples. Thus, the algorithm uses a default block length of 2048 samples,
and a hop size of 1024 samples.

The phase domain feature is derived from the difference between two highly overlapping phase
spectra. The distance At between these two blocks needs to be large enough to have good numerical
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accuracy, but small enough so that there is no phase wrapping between neighboring sinusoids. The
overlap for pitch frequencies up to 450 Hz should therefore be At < m - 48000 Hz = 107 samples.
In practice, this can be implemented as splitting each block of length 2048 into two sub-blocks of
length 2048 — 107 = 1941 samples.

_In the final step of the algorithm, the frequency resolution of the fundamental frequency estimate
fo, is dependent on how many candidate fundamental frequencies are evaluated for each of the tem-
plates. Since pitch is perceived with logarithmic accuracy with respect to its frequency [98], it makes
sense to space fundamental frequency candidates logarithmically in the range of human voice pitches.
A frequency resolution of 200 candidates between 50 Hz and 450 Hz was deemed sufficient, and ex-
tends a bit beyond the normal range of human voice pitches in order to include both children and

pathological voices.

8.3 Evaluation

To evaluate the characteristics of this Magnitude and Phase Spectrogram (MAPS) pitch estimator, we
used two datasets: First, the upper bound of the theoretical accuracy of MAPS was evaluated with
7800 synthetic, speech-like, harmonic tone complexes at various fundamental frequencies in various
levels of white noise. Second, MAPS was evaluated with 5720 combinations of speech recordings from
the PTDB-TUG [120] corpus, mixed with background noise recordings from the QUT-NOISE [25]
corpus and white noise at various signal-to-noise ratios. The PTDB-TUG corpus contains microphone
recordings and laryngograph-derived pitch tracks of 20 English speakers for 4720 TIMIT sentences.
As mentioned above, these were separated into a 60 % training set and a 40 % test set. The exper-
iments only used the test set. The QUT-NOISE corpus contains over 10 hours of various real-world
background noise recordings such as traffic noise or cafeteria noise.

In order for our results to be comparable with other publications, we additionally included the
three widely cited PDAs RAPT [150], YIN [24], and PEFAC [45] in this evaluation. RAPT is a variant
of the time domain auto-correlation method at multiple sampling rates and dynamic programming to
select pitch tracks. YIN is a time domain PDA that compares short signal blocks using the difference
function and an emphasis for low lags. PEFAC works in the magnitude log-frequency domain with a
soft comb and uses a Gaussian mixture model for its voicing decision. The main feature of PEFAC
is somewhat similar to the magnitude feature in MAPS, albeit with a different soft comb and in a
logarithmically warped spectrum. These PDAs were selected for being widely cited by comparison
papers such as [3, 151, 45, 50, 148, 51]. See Chapter 11 for more information on these PDAs. The
ground truth pitch is taken from the PTDB-TUG speech corpus, which used a modified RAPT PDA
on laryngograph recordings.

Gross Pitch Error

To evaluate the algorithm’s estimation accuracy similarly to how humans perceive pitch, the Gross
Pitch Error (GPE) [127] was used. The GPE is the percentage of pitch estimates that deviate from the
true pitch by more than 4+ 20 %. This is similar to prosodic speech perception for Western languages,
where the overall shape of pitches is more important than the precise frequency values. Figure 8.9
shows gross pitch errors for synthetic speech in noise and speech recordings in recorded noise, for both
the ground truth’s voicing decisions and the algorithms’ own voicing decisions.

The theoretical performance of each algorithm tends towards zero GPE for positive SNRs. At
negative SNRs, errors rise quickly. The same pattern can be seen for realistic signals, although zero
GPE remains elusive, and errors start rising earlier than in the synthetic case. Using the voicing
decisions from MAPS instead of the ground truth improves accuracy significantly, since it limits the
evaluation to high-confidence frames, even approaching the theoretical maximum from the synthetic
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Figure 8.9: Pitch estimation accuracy for synthetic, speech-like, harmonic tone complexes in white
noise (left) and speech recordings in recorded noise (right) over SNR. The Gross Pitch Error (GPE) is
the percentage of estimates with a difference greater than £ 20 % between estimated and true pitch
for voiced frames. Solid lines use the ground truth for voicing decisions, dashed lines use the PDA’s
own voicing decisions (if available).

evaluation. A similar improvement can be seen for PEFAC, albeit not as strongly. Section 8.3 will
investigate this difference in more detail.

Fine Pitch Error

Figure 8.10 shows the algorithm’s precision as the Fine Pitch Error (FPE) [127]. The FPE is the
mean error of fundamental frequency estimates within the + 20 % bounds given by the GPE. This is
a numerical analysis of the absolute precision of the estimation, useful for singing voices and musical
applications.

Again, synthetic results show near-zero FPEs for positive SNRs and quick deterioration at negative
SNRs. Realistic results show a similar shape, but generally worse precision. Using the algorithms’ own
voicing decisions again improves precision significantly. FPEs however do not approach zero at high
SNRs, but instead converge on about 1.5 % FPE. This is likely caused by small pitch errors in the
ground truth itself, which can not be estimated by PDAs and therefore register as FPEs. Part IV will
look into this topic in more detail, and will investigate alternative ground truths and speech corpora
for evaluating PDAs.

For synthetic signals, mean errors of MAPS in Figure 8.10 did not quite reach zero, since the
default fundamental frequency search space of MAPS is set to 200 points within 50 Hz—450 Hz, which
yields a frequency resolution of 450/501/ 2%~ 1.01 2 0.5 % FPE. However, the realistic evaluation
shows that this precision is sufficient for real-world signals, in that it is higher than the maximum
attainable precision in the data set. If higher precision is desirable, the density of the fundamental
frequency search space can be adjusted accordingly. Again, the FPE shows that not every frame has an
unambiguous fundamental frequency, and precision can be improved by selecting only high-confidence
frames.
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Figure 8.10: Fundamental frequency estimation precision for synthetic speech in white noise (left) and
speech recordings in recorded noise (right) over SNR. The Fine Pitch Error (FPE) is the MAD of
fundamental frequencies within + 20 % of the true fundamental frequency, for voiced frames. Solid
lines use the ground truth for voicing decisions, dashed lines use PDA’s own voicing decisions (if
available).

Voicing Determination

So far, MAPS has been shown to be highly accurate and precise because only high-confidence frames
are selected for fundamental frequency estimation. Figure 8.11 shows a detection error trade-off graph,
which characterizes the trade-off between false negatives and false positives in the algorithm’s voicing
decision. Since ambiguous estimates are discarded by the VAD algorithm, MAPS’ false negative rates
are high. However, its positive VAD decisions almost always result in accurate and precise estimates,
as evidenced by the negligible false positive rate and very low GPEs. Furthermore, this remains true
even at low SNRs, even though false negative rates clearly deteriorate.

The trade-off between false positives and false negatives can also be adjusted by the VAD threshold.
A more conservative threshold selects fewer frames as voiced, and generally leads to higher precision
and fewer gross pitch errors. Figure 8.12 illustrates this connection for PEFAC and MAPS. However,
while high thresholds can generally push most VADs towards 100 % precision, they do not necessarily
push GPEs towards zero.

MAPS is an unusual PDA in that it is a joint pitch estimator and voice activity detector. Its
“VAD” explicitly selects frames with a clearly defined pitch, instead of merely voiced ones. Because
of that, precision and GPE accuracy are tightly coupled for MAPS, whereas PDAs with mismatched
VADs tend to retain some base level of residual GPEs due to ambiguously voiced frames.

It should also be noted that the ground truth’s voicing decisions are based on laryngograph mea-
surements, which sometimes remain periodic even when the microphone signal is not, for example
during phoneme transitions or noisy fricatives [110, ch. 3.3]. This exacerbates false negatives to some
extent, and implies that real-world false negative rates are likely not as egregious as in Figure 8.11.
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Figure 8.11: Voicing decision properties as a detection error trade-off graph. False negative rates are
plotted against false positive rates on probit-warped axes for various SNRs and PDAs.

Signal Conditions

Figure 8.13 shows the influence of various noises and fundamental frequencies on the estimation
accuracy of MAPS. The relatively small spread between GPE lines in the left graph shows that
the type of noise does not have a major influence on estimation accuracy. Only very stationary noises
such as car noise and white noise are significantly different from the other noises with more temporal
variance and tonal components. If the algorithm’s own voicing decision is used, the SNR of stationary
noises affects accuracy less. This is not as apparent for non-stationary noises, where MAPS likely
picks up tonal components in the background noise, which result in GPE errors. If the background
noise is stationary and non-tonal, however, accurate and reliable estimation remains possible even
with extreme SNRs, although the number of positive voicing decisions becomes small.

The right side shows that estimation accuracy is generally better for high-frequency voices at posi-
tive SNRs and low-frequency voices at negative SNRs. Since different noises mask different frequency
ranges, low-frequency voices with denser harmonics are easier to detect at low SNRs. At positive SNRs,
however, the wider harmonic spacing of higher-frequency voices facilitate their correct estimation.

8.4 Conclusions

The main contribution MAPS makes is the Bayesan combination of a feature in the magnitude spec-
trum and a feature in the phase spectrum. This reduces the ambiguities in either feature, and provides
a probabilistic measure for pitch confidence. Since the confidence is used for both fundamental fre-
quency estimation and the voicing decision, pitch estimates are highly reliable and accurate. Its
reliability can be ascribed to the algorithms’ preference to rejecting ambiguous frames over giving
uncertain estimates, which results in almost perfect precision at the cost of some recall.
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Figure 8.12: Effect of changing the VAD threshold on precision and GPE scores at zero dB SNR.
Precision rises with threshold, while GPE scores fall. Near zero threshold, GPE scores reach ground
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Figure 8.13: Estimation accuracy of MAPS in GPE for different noises (left) and base frequencies
(right) over signal-to-noise ratio. The left side shows GPEs for all available noise types with ground
truth voicing decisions as solid lines, with three prototypical noises highlighted in color and dashed
lines for the PDA’s own voicing decision. The right side shows GPEs for ground truth voicing decisions
for the test set of speech/noise recordings against their mean fundamental frequencies.



Part IV

Defining Truth in Fundamental
Frequency Estimation

Where we realize that any measure for accuracy of
fundamental frequency estimation algorithms is only as valid as
the ground truth it is judged against. Thus, a better measure
for accuracy requires a well-chosen corpus of speech recordings,
and a defect-free ground truth. While this information would
have no doubt been of great use in the construction of the
fundamental frequency estimation algorithm in Part III, it was
not yet available at the time, and it would be disingenuous to
retrofit it into the narrative.

In this part, Chapter 9 explores existing corpora and
their suitability for evaluating fundamental frequency estimation
algorithms. It finds significant problems and differences
between these corpora, both in the quality and quantity of their
recordings, and in their fundamental frequency ground truths, if
any are included.

Chapter 10 addresses the need for a defect-free ground
truth for evaluating estimators, by introducing a Consensus
Truth. In contrast to most existing ground truths, the consensus
truth neither relies on categorically mismatched laryngograph
measurements, nor on error-prone estimates from a single
reference algorithm. It is thus better suited for evaluating
the accuracy of fundamental frequency estimation algorithms,
especially in edge cases.
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Chapter 9

Speech Databases for Pitch
Determination

Abstract

The development of pitch determination algorithms (PDA) is reliant on speech and noise corpora for
training and evaluation. These corpora are designed to be diverse enough to capture all the major
phonemes and pronunciations of everyday speech, yet compact enough to remain computationally
feasible. This chapter explores a number of such speech and noise corpora, quantifies their differences
and biases, and investigates their popularity in published literature on PDAs. These analyses highlight
a number of issues in these corpora, particularly with regards to speaker diversity and cross-corpus
comparability. In general, the PTDB-TUG speech corpus and the QUT-NOISE noise corpus are
found to be appropriate default corpora for the development of fundamental frequency estimation
algorithms.

9.1 Introduction

Human speech is a fundamentally human signal. It is created by humans and most typically perceived
by humans. As such, the pitch of human speech can only be accurately assessed by human listeners.
However, human pitch perceptions are unavailable to human-machine interactions such as automatic
speech recognition or voice activity detection systems. Machines must therefore rely on some other
form of ground truth for estimating the pitch of human speech. These non-human pitch estimates
are referred to as fundamental frequency instead of pitch, and a plethora of databases and algorithms
have been published for estimating and evaluating it.

However, it must be stressed that the notion of accuracy in fundamental frequency estimation
algorithms (or pitch determination algorithms) for human speech can only ever be claimed with
respect to such a ground truth, which is necessarily derived from another algorithmic estimation,
not from actual human pitch perceptions'. The choice of ground truth is therefore a decision of great
consequence in the design of a fundamental frequency estimation algorithm: Varying algorithms for
estimating the fundamental frequency may easily result in an implicit bias when used as a ground
truth.

An alternative method for evaluating PDAs is the use of synthetic speech with a known fundamental
frequency. However, this merely shifts the artificiality from the estimation algorithm to the generation
algorithm, and does not improve the validity of PDA accuracy for human speech.

lexcluding manually-annotated pitch data, which are impractical for large datasets.
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Thus, databases of pre-recorded speech remain a necessity. Several speech databases have been
published for the purposes of fundamental frequency estimation, which provide large collections of
recordings of human speech and various metadata, such as a fundamental frequency ground truth
or laryngograph recordings. The latter are measurements of the openings of the vocal folds during
phonation, which can be used as an alternative source signal for fundamental frequency ground truth.

However, laryngograph recordings are not without their own problems. Most importantly, vocal
folds can intermittently vibrate even though the mouth is closed, and thus have a clearly defined
fundamental frequency where there is no speech. Similarly, vocal folds may vibrate clearly in tran-
sitions where the rest of the vocal tract is not yet in resonance and the speech signal has no clear
pitch yet. The technical apparatus of laryngographs furthermore cannot distinguish between partially
closed and closed vocal folds, and thus misrepresent certain types of phonations [5, 110]. In general,
laryngograph recordings can (locally) exhibit tonality independent of the acoustic speech signal or the
acoustic energy, and are therefore somewhat problematic as a source of ground truth [110].

On a more philosophical level, laryngographs imply that the truth about pitch is to be found at
the source of production, the vibrations of the vocal cords. Alternatively however, it could be argued
that pitch is instead a perception, and should be measured not at the source, but from the perceived
acoustic waveform instead. Both viewpoints have merit, but PDAs necessarily estimate the latter, as
they do not have access to a measurement of vocal fold vibrations. A production-based ground truth
would therefore expect slightly more errors in PDA estimations than a perception-based one.

Regardless of these philosophical musings, any ground truth fundamental frequency has to be
derived from a fundamental frequency estimation algorithm, either from the speech recordings or from
laryngograph recordings. This circular reasoning can be valid, as ground truth estimates are derived
from clean recordings, while PDA evaluations are instead conducted with mixtures containing noise
recordings. However, this assumes close to perfect recording conditions of the speech database, which
may not be true for older databases. Furthermore, both the choice of speakers and sentence lists may
or may not be a good fit for the reference PDA chosen as ground truth, which can bias the speech
database for some applications.

All of these factors form a type of database-dependent bias that makes comparisons between PDAs
difficult unless the same databases are used for both PDAs. This issue is exacerbated for data-driven
algorithms that are trained for a particular dataset, either explicitly in a machine learning algorithm,
or implicitly by optimizing algorithm parameters manually during the development process.

This chapter therefore seeks to quantify differences between speech databases typically used for
fundamental frequency estimation, and to ascertain their suitability for comparison studies. These
differences should not be interpreted as shortcomings of the databases themselves, but merely a record
of their compatibility with other databases.

9.1.1 Databases

Commonly used speech databases contain clean recordings of English speech, usually accompanied
by metadata such as information on the speakers and utterances, as well as ancillary measurements
of laryngographs or articulographs. Purpose-built databases for fundamental frequency estimation
typically also contain a fundamental frequency ground truth.

The following databases were selected for being widely cited in publications on fundamental fre-
quency estimation. All but TIMIT are freely available on the internet, with TIMIT being a commercial
database purchasable from the Linguistic Data Consortium [40]. Table 9.1 summarizes the following
corpora and their popularity in the literature.
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Table 9.1: Speech corpora for fundamental frequency estimation by number of mentions in publications
on fundamental frequency estimation between 1990-2020. The columns f; and Lar. denote whether
the corpus has a fundamental frequency ground truth and laryngograph recordings.

Corpus # Mentions f, Lar.
KEELE 106 v
TIMIT 80

FDA 63 v v
PTDB-TUG 22 v oV
CMU-ARCTIC 19 v
MOCHA-TIMIT 5 v

CMU-ARCTIC [80]

http://www.festvox.org/cmu_arctic/

The CMU-ARCTIC speech synthesis databases were built by the Language Technologies Institute
at Carnegie Mellon University for the purpose of speech synthesis research in 2003. It consists of
1132 phonetically balanced sentences from out-of-copyright texts from Project Gutenberg, read by 18
speakers, for a total of 13:53 h in 15603 audio recordings.

Aside from the audio recordings, it contains phonetic labels and laryngograph signals. The dataset
is freely available under the terms of a BSD-style free software license.

It was selected for being cited in comparison studies such as [125, 23, 30, 32].

Paul Bagshaw’s database (aka FDA/CSTR database) [5]

http://www.cstr.ed.ac.uk/research/projects/fda/

Paul Bagshaw’s database for evaluating pitch determination algorithms was created as part of
Bagshaw’s Ph.D. thesis in 1993, and contains 100 samples read by two speakers in audio recordings
six minutes in length. The sentences were chosen by Bagshaw explicitly for containing phonemes
whose pitch is difficult to estimate. Additionally, it comes with a fundamental frequency ground truth
derived from laryngograph recordings, which are included as well.

This database is otherwise called the “FDA database” or “CSTR database”, and was one of the
first publicly available databases for pitch estimation. For that reason, it has been widely used for
evaluating PDAs, particularly in the nineties and early 2000s. Recent citations in comparison studies
include [162, 49, 161, 1, 163].

The database was published as part of Bagshaw’s Ph.D. thesis without any explicit licensing text
and has been included for being widely cited.

KEELE [122]

https://lost-contact.mit.edu/afs/nada.kth.se/dept/tmh/corpora/KeelePitchDB/

The Pitch Extraction Reference Database created at Keele University in 1995 is another early
database specifically built for pitch estimation. It contains six minutes of ten speakers, each reading
Aesop’s Fable “The Northwind and The Sun”, a phonetically balanced text, complete with laryngo-
graph recordings and a fundamental frequency ground truth.

Like FDA, this database has been cited widely due to its early publication date, but has remained
popular to date, e.g. in [152, 162, 115, 161, 30, 46, 163, 91].

While the original public FTP links to the database are no longer active, the above URL provides
a mirror that was still available in 2019. No specific licensing text is given beyond “The database
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is intended to be open”, “the database should be open, easily obtainable, and practical”, and “The
database [...] is the first step towards a public database to aid evaluation of pitch extraction algorithms.
The database is open and external contributions and remarks are welcome.” [122].

MOCHA-TIMIT [168]

http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html

The MOCHA-TIMIT database was created at the Queen Margaret University College in 1999,
for the purpose of training automatic speech recognition systems, using the same sentence list as
TIMIT. 1t is however well-suited for fundamental frequency estimation applications since it includes
both laryngograph and articulograph recordings in addition to its 4028 samples of 4:38 h of speech
recordings. In MOCHA-TIMIT, different subsets of 460 sentences are read by ten speakers, including
three speakers in the main corpus and seven speakers in the “unchecked” set.

Some of the recording conditions in the “unchecked” set are not as clean as in the main set, but
still usable for fundamental frequency estimation.

The data is “free for non-commercial use”, according to the database’s website [168].

PTDB-TUG [119]

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-
university-of-technology.html

The PTDB-TUG pitch tracking database from Graz University of Technology from 2011 is one of
the biggest and most complete speech databases for fundamental frequency estimation. It contains
9:36 h of 4718 speech and laryngograph recordings from 20 speakers, reading different sets 236 of
TIMIT sentences each, as well as a fundamental frequency ground truth.

It is particularly relevant today as one of the largest databases built specifically for fundamental
frequency estimation, and is particularly popular for comparison studies such as [142, 2, 49, 84, 128,
147, 174, 28, 66, 145].

The database is freely available under the terms of the Open Database License [37].

TIMIT [40]

https://catalog.1ldc.upenn.edu/LDC93S1
The TIMIT Acoustic-Phonetic Continuous Speech Corpus is a commercial database sold by the
Linguistic Data Consortium for the development and evaluation of automatic speech recognition sys-
tems. The database contains 6300 samples of 630 speakers reading 10 phonetically rich sentences each,
for 5:23 h of audio recordings, as well as time-aligned orthographic, phonetic and word transcriptions.
This is another early database from 1993, originally distributed on CD-ROMs, that has been cited
widely, both in comparison studies [89, 88] as well as numerous other publications.

9.2 Literary Survey

These databases were selected either for being particularly popular in publications on fundamental fre-
quency estimation, or for being particularly well-suited for this task. To assess the relative popularity,
we conducted a literary search of the last thirty years (1990-2020).

Publications were searched for in the IEEE database, Springer Link, and the INTERSPEECH
conference archives and included if their title contained the key words “frequency” or “pitch”, and
“speech” was mentioned anywhere in their metadata. These results were filtered manually to only
include publications relevant to fundamental frequency estimation of speech, based on their title. In
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total, the resulting dataset contains 851 publications across hundreds of journals. Table 9.2 lists the
most prolific journals for fundamental frequency estimation research, according to this dataset.

Table 9.2: Most prolific journals for publications on fundamental frequency estimation of speech. All
journals with at least five publications were included in this table.

Journal # Papers Years

International Conference on Acoustics, Speech, and Signal Processing 159 1990-2019
INTERSPEECH Conference 139 1996-2019
Transactions on Audio, Speech, and Language Processing 54 1994-2019
European Signal Processing Conference 49 1996-2018
Workshop on Applications of Signal Processing to Audio and Acoustics 10 1999-2017
Transactions on Signal Processing 9 1991-2015
International Journal of Speech Technology 8 1999-2019
Electronics Letters 7 1993-2007
International Conference on Signal Processing 7 2002-2012
Signal Processing Letters 7 2008-2018
International Symposium on Circuits and Systems 5 2005-2009
EURASIP Journal on Audio, Speech, and Music Processing 5 2014-2018
other 391 1990-2019

To investigate use and popularity of the speech corpora over time, Figure 9.1 graphs the volume of
their references over time. Due to the nature of this literature survey, this merely tracks mentions of
the corpus names, which includes false positives where corpus name are used out of context. This is
likely to overestimate KEELE and CSTR/FDA in particular, as any mention of the Keele University
and the Centre for Speech Technology Research (CSTR) of the University of Edinburgh is included as
a mention of the corpus. Also, the results of TIMIT necessarily include mentions of MOCHA-TIMIT.

Furthermore, this analysis relies on a full-text search of the articles in the dataset, which can be
error-prone or impossible for older articles, where the PDFs sometimes include no text, or only garbled
text from low-quality scans. This is likely to under-estimate popularity in older articles prior to 2000.

Nevertheless, the graph shows the use of corpora steeply increasing with the gaining popularity
of the Internet in approx. 2005. This occurred in parallel with greater processing power becoming
available and the analysis of larger datasets becoming possible. In the 2010s, this led to increased use
of the larger internet-only corpora such as PTDB-TUG and CMU-ARCTIC, and a relative reduction
in the smaller FDA and KEFLE datasets. An exception to these trends is the TIMIT dataset, which
is both large in size, and enduringly popular, likely due to its very early CD-ROM distribution that
apparently remains available at many campuses.

This literature survey dataset is of limited utility in this chapter, but will be revisited in Chapter 9.2
with a more detailed analysis of fundamental frequency estimation algorithms.

9.3 Data Diversity

A key feature of these speech corpora is that they are designed to include a representative set of speech
recordings that translate well to real-world speech usage. On the one hand, this means including as
wide a variety of speakers and phonemes as possible in order to capture the complexities of natural
speech completely. On the other hand the distribution of features should not be too wide so as to
remain as close to natural speech as possible, and to not introduce any unnatural biases.

Earlier corpora in particular were also limited by the processing power available at the time, which
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Figure 9.1: Mentions of various speech corpora over time as a stacked area chart. Search queries
included common alternative names and spellings. Total height is sum of all mentions per year.

made handling larger data sets impractical. In fact, the very first fundamental frequency estimation
algorithms from the 1960s took hours of computation per second of audio recording [105], which made
any kind of larger analysis impossible. Larger datasets of multiple minutes of audio material became
practical only in the 1990s, and led to the publication of the FDA and KEFELE corpora, each with
a little more than five minutes of speech recordings. Distribution of larger datasets remained limited
to physically shipping CD-ROMs, which only commercial entities such as TIMIT’s Linguistic Data
Consortium could feasibly undertake. Thus, truly large datasets only appeared when the Internet was
widespread and fast enough to transport meaningful amounts of data in the 2000s, with multi-hour
datasets such as PTDB-TUG, CMU-ARCTIC, and MOCHA-TIMIT.

These larger corpora include a greater variety of speakers and more diverse sentence lists. A
particularly popular sentence list is the TIMIT prompts. TIMIT, MOCHA-TIMIT, and PTDB-TUG
use variants of these sentence prompts, which are, according to the TIMIT documentation:

The text material in the TIMIT prompts [...] consists of 2 dialect “shibboleth” sen-
tences designed at SRI, 450 phonetically-compact sentences designed at MIT, and 1890
phonetically-diverse sentences selected at TI. The dialect sentences (the SA sentences)
were meant to expose the dialectal variants of the speakers [...]. The phonetically-compact
sentences were designed to provide a good coverage of pairs of phones, with extra oc-
currences of phonetic contexts thought to be either difficult or of particular interest [SX
sentences]. [...] The phonetically-diverse sentences (the SI sentences) were selected from
existing text sources - the Brown Corpus (Kuchera and Francis, 1967) and the Playwrights
Dialog (Hultzen, et al., 1964) - so as to add diversity in sentence types and phonetic con-
texts. The selection criteria maximized the variety of allophonic contexts found in the
texts.

—from the TIMIT corpus documentation (readme.txzt) [40]

The TIMIT prompts include well-known sentences such as “She had your dark suit in greasy wash
water all year” (SA1), “Don’t ask me to carry an oily rag like that.” (SA2), “Seamstresses attach
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zippers with a thimble, needle, and thread.” (sx420), or “Everything went real smooth, the sheriff
said.” (SI453).

While these sentences cover a broad range of phonemes, they have been criticized for using an
old-fashioned style and unrealistically complicated sentences for natural speech [80].

The KEELE corpus uses recordings of Aesop’s Fable “The Northwind and The Sun”, which is
a phonetically balanced text recommended by the International Phonetic Association for showing
phonemic contrast of various English accents [64]. However, the text has been found to lack a few
common phonemes, but overall still a good choice for a phonetically balanced text [29].

CMU-ARCTIC is intended for training speech synthesizers and uses an original set of phonetically
balanced sentences from out-of-copyright books from Project Gutenberg [85]. Sentences were selected
for using a modern style, as well as being phonemically diverse.

Paul Bagshaw’s FDA corpus was designed for evaluating fundamental frequency estimation algo-
rithms. It is explicitly biased towards aperiodic phonemes such as fricatives, nasals, liquids and glides,
which are described as particularly difficult to estimate.

In summary, most of these corpora use sentence lists optimized for phonemic diversity. While the
concrete aims of the sentence lists differ, and have been criticized in some contexts, these issues are
unlikely to be a problem for fundamental frequency estimation, so long as they cover most phonations
and pitches. Still, there remains a trade-off between speaker variety and phoneme variety, that each
corpus solves differently, and an obvious benefit to larger corpora.

9.4 Voice Activity

Speech corpora fill a precarious dual role, both as a means for evaluating PDA performance, and an
optimization target while developing PDAs. Any bias in the corpora is likely to be incorporated into
the algorithms as well. While these issues are certainly more prevalent in today’s machine learning-
oriented workflows than in yesteryear’s theory-motivated signal processing designs, there always remain
implicit assumptions about the kinds of signals an algorithm is expected to be exposed to.

One particularly under-reported aspect of such a corpus bias is its ratio between speech and silence.
All examined corpora include a few seconds of silence before and after each speech recording, probably
in part as an artifact of the recording setup, and in part to give PDAs some time for signal adaptation
before the beginning of the speech data. Yet, these silent passages might ultimately bias the PDAs’
voice activity determination (VAD) system for or against speech activity, or implicitly condone random
pitch estimates at low signal levels if not otherwise controlled for.

Figure 9.2 illustrates the total length of recordings in each corpus, and the amount of silence in
each corpus. As previously noted, total lengths differ dramatically between corpora. But perhaps
surprisingly, a large percentage of each corpus’ recordings consist of silence. This graph considers
as silence any 25-ms block that has less energy than the average of the 5th and 95th percentile
block energy in dB, which was empirically found to be a robust estimator for discriminating speech
from silence. The strongly divergent speech/silence ratios will undoubtedly bias PDAs and VADs for
different signal sparsities.

Equally important as the total lengths and ratios between speech and silence is where that silence
occurs. Figure 9.3 shows histograms of both speech and silence durations, split into silence before the
speech, silence during the speech, and silence after the speech. Any 25-ms block was considered speech
or silent by the same criterion as above, but excluding single-block outliers in the silence before and
after speech, which could occur due to recording glitches such as clicks.

The top graph highlights how the KEELFE corpus uses fewer, but much longer, recordings than the
other corpora in this set. Apart from that, the speech segments in all corpora are of similar length,
possibly slightly longer in PTDB-TUG. A more significant difference appears in the bottom graph
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Figure 9.2: Total length (blue) and speech length (orange) of various speech corpora. Note the time
scale difference between the top and bottom bars.

in the silences, where CMU-ARCTIC, FDA, and TIMIT usually have less than a second of silence
before the speech recording, whereas MOCHA-TIMIT, and particularly PTDB-TUG generously pad
each recording with a few seconds of silence.

These last differences could be of great importance for PDAs that include a denoising or noise
normalization phase, which frequently assume a few frames of undisturbed background noise at the
beginning of each recording. The performance of such PDAs should be expected to be stronger on
PTDB-TUG and MOCHA-TIMIT than on less padded corpora.

The amount of silence during each speech recording is comparable between corpora, with the
obvious exception of KEELFE, and silence after the recording follows a similar distribution as the
pre-silence above.

Since the long recordings in the KEELFE corpus is such an outlier in these preliminary discussions,
we developed a modified version of the KEELE corpus, which simply cuts each KEELE recording in
about a dozen shorter pieces, and thus brings it more in line with the other corpora. This corpus is
included in the graphs as KEELFE-mod.

9.5 Long Term Average Speech Spectrum

Due to the different speakers and sentence lists, the spectral makeup of the corpora is bound to differ.
Figure 9.4 shows long term average speech spectra of the corpora. Strikingly, there are significant
differences in overall loudness between the corpora, with TIMIT being most quiet and CMU-ARCTIC
being loudest. This might be problematic for cross-corpus comparisons of PDAs with absolute decision
thresholds.

The high-frequency ends of the spectra illustrate the different sampling frequencies of the corpora,
where CMU-ARCTIC, MOCHA-TIMIT, and TIMIT are using 16 kHz, KEFELE and FDA at 20 kHz,
and PTDB-TUG with 48 kHz. Depending on the intended application, these differences might be
very significant, not, perhaps, due to the additional spectral content, which reflects rather low-energy
above 8 kHz, but mostly as some PDAs are optimized for a particular sampling rate and frequently
do not work optimally for different ones.
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Figure 9.3: Histograms of length of speech (top) and silence before, during, and after the speech in
each recording. Time scaling on top and bottom are identical.

The main point of the long-term spectra is their spectral composition. Most corpora show three
local spectral maxima around 150 Hz, 300 Hz and 600 Hz [17]. In the literature, these three maxima
usually rise in magnitude with frequency, which has been replicated similarly in KEELE, PTDB-TUG,
FDA, and TIMIT. However, CMU-ARCTIC and MOCHA-TIMIT depart somewhat from published
long-term spectra and emphasize the lower maximum more strongly, while TIMIT has a particularly
strong high maximum.

These biases towards lower frequencies in CMU-ARCTIC and MOCHA-TIMIT, or higher frequen-
cies in TIMIT, can be significant for cross-corpus comparisons: In the presence of background noises,
noises will predominantly mask the lower-energy spectral regions, which correspond to different fre-
quency ranges in these corpora. Moreover, PDAs use features derived from different spectral regions
and should therefore be expected to perform differently for the aberrant corpora.

Although no mention of this is present in the corpora’s documentation, it seems reasonable to
assume that the unusual rising slope of TIMIT between 100 Hz and 500 Hz is an indication of a high
pass filter used during recording.

Reassuringly, at least, all corpora fall off similarly towards low and high frequencies, with a steady
slope of appr. 12 dB/octave.

9.6 Level Distribution

Another consideration for the comparability of corpora is their level range differences, and whether
all speakers were recorded at the same level. To investigate this, Figure 9.5 shows histograms of the
corpora’s signal levels. As expected from the previous section, corpora with more silence have stronger
peaks on the quiet side of the histograms, whereas corpora with more speech are skewed more towards
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Figure 9.4: Long term average speech spectrum of the corpora. Spectra are 50-ms Welch spectra using
a Hann window, averaged over all speech blocks of all recordings of each corpus.

the loud side.

However, the relative levels of the loud end and the quiet end vary strongly between corpora. As
we already learned from the previous section, TIMIT and FDA have quieter maxima than the other
corpora, and CMU-ARCTIC is clearly the loudest. Moreover, however, the level difference between
silence and speech of MOCHA-TIMIT, FDA, and TIMIT is about 10 dB better than CMU-ARCTIC’s,
KEELE’s, or PTDB-TUG’s. Though unlikely to be of importance for fundamental frequency estima-
tion, these differences can potentially fool simple voice activity determination algorithms, often part
of older PDAs.

A particularly interesting case of this is MOCHA-TIMIT, which evidently used two different record-
ing setups with different levels of background noise.

The main histogram peak in most corpora looks roughly Gaussian, except for CMU-ARCTIC,
whose main peak is asymmetric with a sharper fall-off towards the maximum level of 0 dB than
towards lower levels. This might indicate the presence of a compressor in the recording setup, even
though this is not mentioned in [80].

9.7 Voiced vs. Unvoiced speech

For the purposes of fundamental frequency estimation, we are mostly interested in voiced speech. The
unvoiced speech is of interest only for voicing decisions, if included in a PDA. This voicing decision,
however, is a matter of some urgency, as voicing false positives may present un-estimable frames as
estimation errors, or hide difficult sections behind false negatives.

The bias towards voiced and unvoiced speech in a corpus is therefore very relevant for comparing
corpora. Figure 9.6 summarizes the amounts and ratios of voiced and unvoiced speech in each corpus.
All of these results used the consensus truth (introduced in Chapter 10) as their fundamental frequency
estimate and voicing decision, to have a comparable data base.

As the data shows, the ratios between voiced and unvoiced speech vary greatly between corpora,
from 3/2 in FDA and PTDB-TUG to 7/2 in CMU-ARCTIC and MOCHA-TIMIT.

For training computationally complex PDAs, it might make sense to select a corpus with a high
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Figure 9.5: Level histograms of 50-ms blocks of each corpus, with level range in the legend. The
level range is the level difference between silent parts and speech, as measured by the level difference
between the first and last density greater than one percent.

voiced-to-unvoiced ratio in order to optimize the computation time on useful operations. For training
voicing determination algorithms, however, a more balanced corpus might be more sensible.

9.8 Fundamental Frequencies

What is crucial to algorithmic pitch determination is the fundamental frequencies themselves. Fig-
ure 9.7 shows histograms of fundamental frequencies in the corpora, again determined using the
consensus truth (see Chapter 10) for comparability.

Clearly, all corpora show two distinct maxima for male and female voices, respectively. The relative
height of the maxima, however, varies between corpora, indicating different distributions of male and
female voices. PTDB-TUG, KEELE, FDA, and MOCHA-TIMIT are more or less balanced, whereas
CMU-ARCTIC and particularly TIMIT show significantly more male voices than female voices.

This should be an important consideration, not only for gender equality, but also because PDAs
frequently estimate low or high voices with different accuracy. For comparisons between different
PDAs, such a biased corpus would skew results unrealistically in favor of PDAs that deal better with
matching voices. If training a PDA, it might actually impose the corpus bias onto the PDA. Such a
gender imbalance is thus a serious matter, particularly in the widely cited TIMIT corpus, where the
bias is strongest.

Lastly, the graph shows the curious case of the FDA corpus, where the female voice seems unrea-
sonably high-pitched.

Instead of seeing this high-pitched voice as a defect, however, it might in fact be beneficial to
view the absence of such voices in the other corpora as the true problem. All of their sentences were
spoken by very normal voices, thus under-representing exceptionally deep male voices, or especially
high female voices, or even higher children’s voices in the process. Algorithms trained and evaluated
with these corpora are unlikely to work well for such outlier voices, creating an unnecessary diversity
issue. It might therefore be a great research opportunity to assemble a more diverse corpus specifically
for fundamental frequency estimation that explicitly includes such outliers.
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Figure 9.6: Unvoiced speech (blue) and voiced speech (orange) of various speech corpora, with the
ratio between the two in white text in the center. Note the time scale difference between the top and
bottom bars.

Another aspect of fundamental frequencies in speech is their change over time. Figure 9.8 shows
a histogram of changes in pitch between consecutive time frames. In general, intra-utterance pitches
appear to decrease more than they increase in all corpora. This effect is slightly stronger for CMU-
ARCTIC and slightly weaker for PTDB-TUG and TIMIT. One oddity, however, is TIMIT, whose
maximum is significantly stronger than the other corpora’s, indicating more monotone voices in this
corpus than in the other corpora.

9.9 Background Noises

In many comparison studies of PDAs, their performance is evaluated with variable background noise
at a range of SNRs. Two of the most popular noise databases used for this purpose are NOISEX, and
QUT-NOISE.

NOISEX [155]

http://www.speech.cs.cmu.edu/comp.speech/Sectionl/Data/noisex.html

This noise corpus was designed for studying the effect of additive noise on speech recognition
systems. It contains 15 recordings of about one minute each, taken from the RSG.10 noise dataset [144].
Among these recordings are noise recordings from a machine gun, the noise inside various military
vehicles and airplanes, as well as factory floor noise, car noise, office noise, babble noise, and synthetic
pink and white noise, each recorded at 20 kHz.

QUT-NOISE [26]

https://research.qut.edu.au/saivt/databases/qut-noise-databases-and-protocols/

The rather larger QUT-NOISE background noise corpus consists of 13:39 hours of various natural
background noises recorded at 48 kHz in stereo for evaluating voice activity determination algorithms.
This includes 20 half-hour-long recordings of cafés, kitchen and living room ambient noises, multiple
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Figure 9.7: Histogram of fundamental frequencies of the speech recordings in each corpus.
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Figure 9.8: Histogram of fundamental frequencies changes of the speech recordings in each corpus,
normalized to octaves per second.

street noise recordings, car noises with open and closed windows, as well as reverberant parking lot and
swimming pool noises. Some recordings include preliminary calibration sweeps at the very beginning
of the recording. Care should be taken to not include these in evaluations.

Figure 9.9 shows long-term spectra of these noise databases, as well as spectra of each noise
recordings therein. In general, NOISEX are louder on average and somewhat more variant between
recordings. Some of the NOISEX recordings feature strong tonal elements (jet engine whine) above
the range of speech fundamental frequencies. Listening to the examples, each recording is very uniform
and steady.

In comparison, QUT-NOISE recordings are more varied within each recording, with transient
events such as honking cars or a droning truck engine driving by, or the clanging of a dropped utensil
in the kitchen recording.

These characteristics are confirmed in Figure 9.10, where the range of levels in QUT-NOISE is
significantly broader than in NOISEX. The graph also shows the few outlier files in NOISEX, which
are less loud than the others in the lower maximum near -25 dB. The minor maximum at -65 dB is
an artifact of the machine gun noise, which is relatively silent between each shot.
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Figure 9.9: Long-term average spectra of two background noise databases, with spectrum of each noise
recording as faint lines.

Thus the more stationary NOISEX recordings are particularly useful for small-scale, reproducible
evaluations (and military applications), whereas the more varied QUT-NOISE provides a more com-
plete assessment of the vagaries of real-world background noises useful for larger-scale studies.

9.10 Conclusions

The choice of speech and noise corpora for training and evaluating fundamental frequency estimation
algorithms is an important one. As this chapter has shown, there are significant differences between
the corpora, which makes cross-corpus comparisons difficult and might bias PDAs trained with any
one particular corpus.

If only one speech corpus had to be chosen, it would probably be PTDB-TUG, as it contains a
sizable amount of data, with a diverse speaker set and sentence list, has a neutral gender distribution,
and has no obvious other defect. By a similar argument, QUT-NOISE is a reasonable choice for a
noise corpus.

However, it must be stressed again that all of these corpora are biased strongly towards WEIRD
voices, as in Western, Educated, Industrialized, Rich, and Democratic. There are few strong dialects,
colloquial idioms, or extraordinary voices in these corpora, and the noise corpora are clearly optimized
for the WEIRD world that also provides the funding and framework for this dissertation. The corpora
also do not include shouting voices, emotional voices, whispering, or singing voices, or indeed languages
other than English. While likely not a major problem for fundamental frequency estimation and voice
activity determination technologies, it is nevertheless clearly a far cry from actually capturing all the
full varieties of human speech, as we humans understand it.
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Chapter 10

Consensus Truth

Abstract

A large number of PDAs have been developed as features for various speech processing tasks such as
speech recognition, speaker identification, and speech compression. To evaluate the accuracy of these
algorithms, their estimates can be compared against a known ground truth fundamental frequency.
However, the ground truths in typical speech corpora were calculated by single reference PDAs, in-
heriting their biases, and differing between corpora. Furthermore, ground truths are typically derived
from laryngograph recordings, whose fundamental frequency activity is different from that of acoustic
recordings. We therefore propose a new method for deriving a fundamental frequency ground truth
from the consensus of a number of state-of-the-art fundamental frequency estimation algorithms, which
can be calculated from acoustic recordings alone, is more robust than a single algorithm’s estimate,
and not subject to the ambiguities of laryngograph estimates.

10.1 Introduction

The pitch of the human voice is an essential characteristic of speech and communication. It is, however,
a human perception that cannot be measured objectively; Instead, we rely on estimating the funda-
mental frequency of voiced speech using computer algorithms. Thus without access to an objective
truth, this raises the question of how to define a truth for evaluating such algorithms.

Common speech corpora that include a fundamental frequency ground truth [122, 5, 4, 119] derive
them from laryngograph measurements that record the vibrations of the vocal folds at the origin of
voiced speech using adapted PDAs. However, vocal fold vibrations do not necessarily lead to sounds
with a unique fundamental frequency: complex vocal tract movements, such as phoneme transitions,
onsets, and offsets, can obscure the fundamental frequency such that the acoustic emission is unvoiced
or multi-pitched, even though the vocal folds vibrate differently [110].

Figure 10.1 shows both an acoustic recording and a laryngograph recording of a short sentence,
to illustrate these differences. Onsets and offsets, particularly the onset of “had” and the offsets
of “she” and “your” are more clearly harmonic in the laryngograph recording than in the acoustic
recording, whereas some harmonicity remains visible in the acoustic recording at the end of “dark”
and “suit” that is missing in the laryngograph. The laryngograph recording additionally shows some
pitch doublings in “she”, and the ends of “dark” and “suit” that is less pronounced in the acoustic
recording. For reasons such as these, laryngograph-based fundamental frequency ground truths are
not ideal for evaluating PDAs.

Another approach to evaluating PDAs, especially in noise, is to rely on a reference PDA’s estimate
of clean speech signals as the ground truth [32, 67, 101, 83, 3]. This enables the use of speech corpora
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Figure 10.1: Magnitude STFTs of an acoustic speech recording (top) and a laryngograph recording
(bottom). Laryngograph shows more detailed frequency tracks at onsets and offsets, especially near
2.9 s and 3.9 s, and significantly different harmonicity near 3.3 s. The signal is sample F06/sal from
the PTDB-TUG corpus of a woman saying “She had your dark suit in greasy wash water all year”.

without an existing ground truth or laryngograph recordings, including special-purpose corpora such
as pathological voices [77, 134] or foreign languages [19, 57]. However, the quality of such a ground
truth is inherently dependent on the PDA used as reference, and will inherit its biases.

This chapter introduces a new fundamental frequency ground truth that is solely derived from
acoustic recordings and does not exhibit ambiguous laryngograph pitches and algorithm-specific id-
iosyncrasies by requiring multiple PDAs to agree on a common fundamental frequency. This mea-
sure, henceforth called consensus truth, can be calculated from arbitrary clean speech recordings, and
should reflect the acoustic tonality of speech better than laryngograph-derived fundamental frequency
ground truths. This study provides pre-calculated consensus truth tracks for a number of popu-
lar speech corpora, namely FDA [5, 4], KEELE [122], MOCHA-TIMIT [168], PTDB-TUG [119],
and TIMIT [40]. These results are available on the companion website to this dissertation at
https://bastibe.github.io/Dissertation-Website/.

The selection of PDAs for calculating the consensus truth is bound to be somewhat arbitrary, as
fundamental frequency estimation is still an active area of research with new PDAs being developed
regularly. For this study, PDAs needed to provide reference implementations, accurately estimate the
fundamental frequency of arbitrary speech signals, and have a reasonable run time for short audio
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samples.

Recent comparison studies [147, 148, 3, 31| selected BANA [102], DNN [50], PEFAC [45],
PRAAT [9], RAPT [150], SRH [31], STRAIGHT [73], SWIPE [18], MBSC [151], YAAPT [69], and
YIN [24] as the most reliable PDAs for various speech analysis tasks. Recent publications on fun-
damental frequency estimation additionally used CREPE [79], DIO [101], KALDI [42], SACC [86],
SAFFE [22], SIFT [93], SHR [149], and NLS [103] as common reference PDAs [67, 163, 66, 1, 2, 32]. All
of these PDAs provide reference implementations and were shown to estimate fundamental frequencies
reliably for clean and noisy speech signals.

Fach of these PDAs are based on reasonable signal models that were developed with a particular
application in mind, such as various measures for harmonicity or periodicity in a number of different
signal representations. The consensus truth represents a sort of grand average of these underlying
concepts, and thus a more holistic view of fundamental frequency estimation across multiple areas of
application and theories of operation.

10.2 Methods

To calculate the consensus truth, fundamental frequency estimates from all PDAs in Table 10.1 were
calculated for every clean speech recording from the speech corpora FDA [5, 4|, KEELFE [122], PTDB-
TUG [119], TIMIT [40],and MOCHA-TIMIT [168]. These corpora were selected for being widely used
for fundamental frequency estimation tasks [163, 2, 66, 1, 102, 69, 18, 147, 148, 31], as detailed in
Chapter 9. Three corpora, KEELE, FDA, and PTDB-TUG, already include a fundamental frequency
ground truth. The two remaining corpora, TIMIT and MOCHA-TIMIT, do not, and are commonly
used with another PDA as ground truth[45, 16, 88, 166].

For each speech recording in every corpus, fundamental frequency estimates of all PDAs were
latency-corrected and resampled to a common time base of one estimate every millisecond, which
was chosen significantly higher than the PDAs’ time bases to account for timing differences. Latency
correction is necessary, since various PDAs position their fundamental frequency estimates at either the
start or the center of each block. PDA latencies were estimated by minimizing their estimation errors
for various lags and short modulated tone complex of a known fundamental frequency. Estimates were
assumed unvoiced where the ground truth voicing probability was smaller than 50 % or no fundamental
frequency was available.

To calculate the consensus truth, we first define a consensus predicate C")(t) that checks whether
the fundamental frequency estimate fgn) (t) of the nth PDA at time ¢ is within a +£20 % consensus range
of the median estimate P, 5(¢) over all PDAs, similar to the commonly used Gross Pitch Error [127]
measure:

A0

'R0

C(t) = <0.2 (10.1)

A consensus voice activity decision VAD(¢) at time ¢ is then defined as the fraction of PDAs that
estimated a voiced fundamental frequency within the consensus range:

N
VAD(t % ; [[ ) A VAD™ (¢ )]L (10.2)

where N is the number of all PDAs, VAD" (t) is the binary voicing decision of the nth PDA, and
[-]; is the Iverson bracket, which is 0 or 1 depending on the logical proposition inside.
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Table 10.1: Fundamental frequency estimation algorithms used to calculate the consensus truth

Name URL to download

AUTOC [140] reimplemented from publication

AMDEF [130] reimplemented from publication

BANA [102] http://www2.ece.rochester.edu/projects/weng/code.html
CEP [105] reimplemented from publication

CREPE [79] https://github.com/marl/crepe

DIO [101] http://www.kki.yamanashi.ac.jp/~mmorise/world/english/
DNN [50] http://web.cse.ohio-state.edu/pnl/software.html

KALDI [42] https://github.com/LvHang/pitch

MAPS (Chapter 8) https://bastibe.github.io/Dissertation-Website/maps/index.html
MBSC [151] http://www.seas.ucla.edu/spapl/shareware.html

NLS [103] https://github.com/jkjaer/fastFoNls

PEFAC [45] http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
PRAAT 9] https://github.com/praat/praat

RAPT [150] http://www.speech.kth.se/wavesurfer/links.html

SACC [86] http://labrosa.ee.columbia.edu/projects/SAcC/

SAFE [22] http://www.seas.ucla.edu/spapl/weichu/safe/

SHR [149] https://mathworks.com/matlabcentral/fileexchange/1238
SIFT [93] reimplemented from publication

SRH [31] https://github.com/covarep/covarep

STRAIGHT [73] https://github.com/HidekiKawahara/legacy_straight

SWIPE [18] http://www.cise.ufl.edu/~acamacho/english/curriculum.html
YAAPT [69] http://www.ws.binghamton.edu/zahorian/yaapt.htm

YIN [24] http://audition.ens.fr/adc/

A frame is defined as voiced by majority vote if VAD(¢) > 0.5, and unvoiced otherwise. PDAs
that do not have a VAD are assumed to classify every frame voiced, and thus determine voicing based

solely on C'(™(t).

The consensus fundamental frequency f,(t) is then selected as the mean of all estimates within the

consensus range:

I

f,(t) = VAD(t) i Fim ) [[CW (t) A VAD™ (t)]] (10.3)

where 1/VAD(t) is the number of all voiced PDAs.

10.3 Evaluation and Discussion

The fundamental frequency consensus truth was designed as a reproducible and reliable method for
estimating the fundamental frequency of clean speech recordings for the purpose of evaluating the
performance of fundamental frequency estimation algorithms. It should therefore behave similarly to
the ground truths available in PTDB-TUG, KEELE, and FDA, yet not be subject to some of their
shortcomings. Small differences in voicing decisions and fundamental frequency are to be expected
due to numerical variations, and the differences between microphone and laryngograph recordings.
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Figure 10.2: Probability density of fundamental frequency differences as the quotient of the corpora’s
ground truths and the consensus truth. Dotted vertical lines mark +20%, or gross pitch errors.

A summary of these differences between the corpora’s ground truths and the consensus truth are
shown in Figure 10.2. The graph shows the probability distribution of estimation differences as the
quotient between the corpora’s ground truths and the consensus truth, for frames where both truths
are voiced. Differences are mostly small, with a slight bias towards lower frequencies in the ground
truths, and small but notable octave errors in PTDB-TUG’s ground truth.

Table 10.2 interprets these differences as gross and fine pitch errors as if the consensus truth were a
PDA: gross pitch differences denote the percentage of consensus truth fundamental frequencies within
+20% of the ground truth. Fine pitch differences are the mean absolute difference within +20%, for
frames where both truths are voiced. The table shows gross pitch differences to be generally rare,
and fine pitch differences small, with the biggest differences for PTDB-TUG, due to the octave errors
shown in Figure 10.2. These metrics are well below the margin of error for evaluating fundamental
frequency estimation algorithms in noise but may be significant for clean speech evaluations.

Table 10.2: Fundamental frequency estimation differences between the consensus truth and the cor-
pora’s ground truths. Gross differences are the percentage of frequencies outside +20% of the consensus
truth, and fine pitch differences are the mean estimation difference within +20%.

Corpus ‘ Gross differences Fine differences
PTDB-TUG | 3.5 % 2.16
KEELE 23 % 1.39
FDA 1.0 % 1.72

Voicing decision differences are summarized in Table 10.3. In general, variations between the
corpora’s ground truths’ voicing decisions and the consensus truth’s voicing decisions are small. All
three corpora’s ground truths label slightly more frames as voiced than the consensus truth. This is as
expected, since the ground truths’ laryngograph recordings can be periodic during onsets, offsets, and
phoneme transitions, while the rest of the vocal tract is not yet in resonance, and the acoustic speech
signal is not yet periodic. The opposite case of consensus-positive decisions for ground truth-negative
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frames are less frequent. The overall number of voiced frames in the consensus truth is smaller than
in the corpora’s ground truths by 0.21 % for PTDB-TUG, 0.63 % for FDA, and 3.01 % for KEELE.
As these frames are deemed unvoiced by the majority of PDAs, this reduction is probably justified,
and will result in fewer spurious voicing detection errors when evaluating PDAs.

Table 10.3: Voicing decision comparison of the corpora’s ground truths and the consensus truth.

PTDB-TUG KEELE FDA
Voiced Unvoiced | Voiced Unvoiced | Voiced Unvoiced

Voiced 2015 % 3.19 % 4483 % 1.79 % 3532 % 2.04%
Unvoiced | 3.40 %  73.26 % | 480 % 4858 % |2.67% 59.98 %

Consensus

The data in Tables 10.2 and 10.3 clearly highlights the advantage of the consensus truth over
laryngograph-derived ground truths: between 5.7 % and 9.5 %! of corpus ground truth estimates
are considered gross pitch errors and VAD errors by the majority of PDAs. When evaluating PDAs
against these ground truths, these errors would be attributed to the PDAs. The consensus truth
should therefore result in fewer errors in general, and a more truthful representation of PDA accuracy.

The consensus truth is furthermore preferable to any one individual PDA’s estimates of clean
speech recordings, as it is not susceptible to individual algorithms’ biases. Table 10.4 shows the
amount of gross pitch errors of each algorithm when judged against each corpus’ ground truth as well
as the consensus truth. Every PDA shows at least a small amount of GPEs compared to the consensus
truth?, indicating that every PDA’s GPEs are different. The consensus is therefore indeed required
for suppressing these individual GPEs, and can not be replaced by any single PDA’s estimate.

Furthermore, GPEs in Table 10.4 are consistently and significantly lower when judged against the
consensus truth instead of the corpora’s ground truth. The differences in PDA GPEs are similar to
the GPE differences between truths in Table 10.2, indicating once more that the corpus ground truths
indeed deviate from what can be estimated from their speech signals. In contrast, the consensus truth
is by design more consistent with PDAs, and therefore a better target for PDA evaluations.

10.4 Conclusions

In order to evaluate fundamental frequency estimation algorithms, a reliable ground truth is required.
However, such ground truths are only available for select speech corpora and typically rely on single
reference PDAs. Additionally, these ground truths are typically derived from laryngograph recordings,
which differ slightly from acoustic recordings when used to derive fundamental frequency estimates.
The consensus truth offers a solution to both of these problems by being more consistent across corpora,
and being calculable from any acoustic speech recording without requiring laryngograph recordings.

The consensus truth was shown to be a superior replacement for laryngograph-derived ground
truths and is provided as part of this dissertation for a number of widely-used speech corpora for
speech analysis tasks, including some that do not have a fundamental frequency ground truth of their
own. The evaluation proved that the consensus truth is sufficiently similar to existing ground truths,
while avoiding some of their biases. It is thus a valid replacement for existing ground truths, and a
better choice than any single reference PDA for calculating fundamental frequency ground truths of
future speech datasets.

Source code and instructions on how to calculate the consensus ground truth for further corpora are
provided at this dissertation’s companion website at https://bastibe.github.io/Dissertation-Website/.

Ithe sum of both kinds of VAD errors and GPEs
2except for SWIPE, which is due to a problem examined in Chapter 12
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Table 10.4: Fundamental frequency estimation accuracy in GPE for clean speech recordings of PDAs
for various corpora and ground truths. Consensus truth GPEs are consistently lower than corpora’s

ground truths.

10.5

Truth PTDB-TUG KEELE FDA

Corpus  Consensus | Corpus  Consensus | Corpus  Consensus
AMDF 21.99 % 11.95 % 15.78 % 10.85 % 16.71 % 11.91 %
AUTOC 17.99 % 14.33 % 22.73 % 20.79 % 40.25 % 37.93 %
BANA 16.40 % 727 % 11.60 % 6.21 % 833 % 4.03%
CEP 44.25 % 38.70 % 37.69 % 33.57 % 37.70 % 35.64 %
CREPE 3.74 % 1.03% 1.86 %  0.56 % 081 % 0.06%
DIO 344 % 043 % 1.35 % 040 % 066 % 011 %
DNN 826 %  5.60 % 9.9 % 6.77% 789 %  5.52 %
KALDI 1.77 %  1.33% 043 % 015 % 043 % 0.16 %
MAPS 1.98% 011 % 1L.15% 019 % 1.32%  0.09 %
MBSC 1.65% 0.33 % 081 % 011 % 051 % 0.02%
NLS 2345 % 17.01 % 15.21 % 11.69 % 12.05 % 8.22%
PEFAC 19.32 % 16.98 % 12.79 % 9.00 % 416 % 244 %
PRAAT 432 %  2.08% 209 % 0.88% 1.89 % 032 %
RAPT 591 % 454 % 5.05%  3.90 % 540 %  4.09 %
RNN 8.76 %  6.46 % 956 %  6.68% 749 % 545 %
SACC 3.61% 0.50 % 286 %  0.87 % 1.25%  0.03 %
SAFE 333% 0.50 % 240 % 0.09 % 270 % 028 %
SHR 6.97 % 2.09 % 1.48% 112 % 8.68 % 451 %
SIFT 31.29 % 2291 % 18.86 % 14.78 % 20.15% 1715 %
SRH 292%  0.66 % 1.63%  0.66 % 346 % 216 %
STRAIGHT | 3.41 % 057 % 1.96 %  0.11 % 1.78 %  0.26 %
SWIPE 1.21 %  0.00 % 0.05%  0.03% 0.07 %  0.00 %
YAAPT 19.67 % 14.25 % 15.52 % 10.91 % 21.31 % 17.25 %
YIN 11.54 % 215 % 576 %  1.52 % 560 % 1.44 %
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Part V

Evaluating Fundamental Frequency
Estimation Methods

Where the true purpose of this dissertation is revealed in an
unprecedented comparison of algorithms, databases, and truths.
This comparison is so large in scope that it is broken up into two
chapters:

Chapter 11 introduces the algorithms to be compared
in a review of fundamental frequency estimation’s varied history
over the last thirty years, as well as a quantitative literature
survey of their scientific reception and significance. The chapter
also rigorously defines the performance measures used for
the comparison, and explicitly defines the full breadth of the
comparison dataset.

Chapter 12 finally conducts the comparison of algo-
rithms, corpora, and truths that the whole dissertation has
been preparing. The unique quantity of data available to this
study allows for an equally unique depth of analysis, with error
measures both traditional and novel that reveal a number of
hitherto unknown properties in all algorithms.

Quite contrary to our initial intentions, we found this
meta-analysis of fundamental frequency estimation of greater
interest than the algorithms themselves.  The fundamental
frequency of speech, as we discovered, is not as rigorously
defineable as originally thought, and its estimation is therefore
an art as well as a science, with no definitive way of defining its
beauty.
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Chapter 11

A Replication Dataset for Fundamental
Frequency Estimation

Abstract

The previous chapters introduced pitch and the fundamental frequency of speech as general concepts.
Afterwards, a concrete algorithm for estimating them was outlined, followed by various databases and
a ground truth for comparing estimators. Thus, the stage is set to conduct a thorough comparison of
estimators.

This chapter introduces the “rules” of the comparison: It establishes the algorithms and implemen-
tations used for the comparison, and a set of error measures, databases, and ground truths. The result
is a database of algorithms, signals, and fundamental frequency estimates, as well as pre-computed
error measures and ground truths that can be used for comparisons with new algorithms so as to
replicate existing studies, and conduct comparison studies within the dataset.

11.1 Introduction

The fundamental frequency of speech appears to be a complete and specific area of research, apparently
with a clearly defined estimation target, and a number of simple and obvious estimation algorithms.
Yet, the research community has published hundreds of papers on this topic over the last sixty or so
years, with no end or definitive solution yet in sight.

With such an abundance of knowledge on this topic, it is perplexing that no definitive solution has
yet been found. The problem is the endless variability of human perception. Speech is inherently a
human signal and any definition of its properties is inherently related to how we humans perceive them.
Any purely technical definition and estimation of fundamental frequency is unlikely to agree with our
perception, and is therefore deemed inadequate for speech, while perhaps technically correct. A more
“human” definition must lie somewhere in between fundamental frequency and pitch, both rigorously
definable and close to human perception. But like any human concepts, there is considerable leeway
between these ideals, with no obvious ground truth. Where there is no truth, there cannot be a
definitive solution, either.

Thus, PDAs must strike a balance between perception and math. Each PDA must define its
own model of speech, in which its own implementation can be said to be optimal, or at least closer
to optimal than previous PDAs. These signal models can be surprisingly varied. In general, they
are typically either based in speech production, where regular glottis pulses produce a periodically
self-similar signal, or they are modeled on speech perception, where the speech signal is made from
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harmonically related phase-locked sinusoids. Some have argued that these models are mathematically
related [21], but practical implementations typically are not and result in distinct characteristics.

Furthermore, PDAs can target different applications, which prioritize different algorithm charac-
teristics. For example, some applications such as automotive or aviation, can prioritize certain kinds
of environmental noises. A focus on singing voices requires high frequency resolution, but does not
need as much robustness to noise. Applications in forensics might favor the exact opposite behavior.
Besides these target criteria, some applications have to work with limited computational resources, or
within a certain margin of delay from an audio recording.

Comparisons between PDAs, then, must somehow define a common denominator for all these
diverging ideas about pitch, even though doing so is necessarily putting more exotic PDAs at a
disadvantage. But as publications nowadays require claims of “being the best” at all costs, even a
flawed comparison is more important than ever, unfairly or not.

Such claims of a “novel”, “best” PDA should always be interpreted as the introduction of a new
and exciting definition of a signal model for fundamental frequency, and not so much as a claim of
actual supremacy in a comparison study. Conversely, comparison studies should focus on differences
instead of ordered rankings.

Thus, there is still value in comparison, so long as the testing conditions are clearly defined and
varied enough to capture the intricacies of each PDAs’ behavior. While there cannot be a “best”
PDA in general, the lesser claim of being “best at X” should still be valid and useful. Moreover, the
usefulness of such a comparison is probably proportional to the number of “Xs” considered, to draw
as complete a picture of each PDA’s strengths and weaknesses as possible.

Solving the comparison for a large number of Xs, requires an equally large data set. A dataset
as varied as possible, including many different PDAs, speech signals, and noise signals. A dataset, in
other words, the likes of which has not been attempted before.

This chapter describes the construction of such a dataset, its components, and how to reproduce it.
This “replication dataset” can recreate most published smaller-scale comparison studies, at least for
the PDAs included. Moreover, future PDAs could opt to simply compare to the replication dataset
instead of running their own comparisons, so long as they agree to use the same error measures and
signals for evaluation.

11.2 Algorithm Availability

With over 800 publications available on fundamental frequency estimation algorithms in the last thirty
years alone', but only limited computation time and limited human resources available, a choice has
to be made. Only a small subset of all PDAs can be included in a practical dataset. Necessarily, these
must have an implementation available, a reasonable run time, and be of general interest. The latter
point might mean being widely cited, of historical significance, or an otherwise noteworthy reference
point of the state of the art.

A pre-existing selection of such PDAs can be found in existing comparison studies, and in the
evaluations of newly published PDAs if they include a comparison. These PDAs have the benefit
of having already been found suitable for comparison studies, and having been integrated into a
framework for comparisons at least once.

Integrating a large number of these PDAs into the larger framework for this study, however, still
proved extraordinarily difficult. Old PDAs in particular often used severely outdated programming
environments that are no longer reproducible on modern operating systems. Even where the program-
ming languages and build tools are still around, years of software updates often lead to obscure bugs

1See chapter 9
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or crashes. In a few cases, these could be fixed, which will be noted in their detailed discussions later,
but in other cases, the problems proved insurmountable and the algorithm had to be dropped.

In general, implementations in high-level programming languages such as Matlab or Python proved
easier to work with than lower-level languages such as C or Java. This is mostly due to their use
of high-level abstractions such as built-in linear algebra frameworks, whereas these tend to come as
independent modules in lower-level languages that must be installed separately and can be problematic
in their own right. Also, high-level run-time errors were easier to debug in interpreted languages than
the compile-time errors and separate (and archaic) debuggers of lower-level languages, despite the
author’s extensive experience in both kinds of systems.

Where no implementations of historically significant algorithms were available, re-implementations
were attempted. However, even widely cited, basic algorithms were found to lack important parameter
values or decision thresholds in their original publications; hence, this endeavor had to be limited to
only the most critical PDAs, and even then leave out non-essential parts such as voicing determination
systems.

A number of algorithms were additionally found to run acceptably fast only on the small data sets
of their original publications, but could not be run on even dozens of speech samples due to memory
leaks, or excessive memory use while running?. More generally, performance optimizations in scientific
algorithms were found to be a constant source of problems, ranging from simple unmet assumptions
such as fast GPUs or availability of multiple CPUs, to excessive hard drive caching, to the myriad errors
of C-based Mex files®. The latter, particularly, wreaked all sorts of unintended havoc including, but not
limited to, memory access violations, leaking temporary files, leaking zombie processes, infinite-looping,
continuously consuming a system resource until the process crashes, crashing other programs, crashing
the operating system, and destroying file systems. Suffice it to say that performance optimizations
should be avoided wherever possible in scientific algorithms.

It should be explicitly noted that none of this behavior was the respective authors’ intention, but
merely a consequence of inexpert programming. The fact that such optimizations actively detract from
future use of the algorithm, and therefore hinder a wider adoption and citation, is, however, ultimately
damning. Where published scientific programs are concerned, simpler and higher-level programs were
found vastly preferable to highly “optimized” low-level ones. This is particularly true as most of the
run-time performance differences do not matter with hardware years in the future anyway, and the
vast parallelism of a current-day computer cluster makes most polynomial-time performance differences
between algorithms unimportant.

Regardless, 25 PDA implementations met the above criteria and will be detailed in the following
sections. These range from simple recreations of the first digital PDAs from the 1960s, to state-of-
the art machine learning constructs from 2020 and should provide a broad overview of the various
developments of pitch estimation research.

Finally, due to the considerable computation time required, the selected algorithms had to be run
in a batch processing framework on a compute cluster to gather the dataset. However, the algorithms’
volatile and error-prone run-time behavior precluded the use of common batch processing frameworks,
as these often cannot deal with crashes or reboots, and can be difficult to integrate with Matlab,
particularly. Additionally, it was found essential to run every algorithm in its very own process, as
many of them could not be trusted to run correctly in a non-clean environment, where they would re-
use temporary data from previous runs or simply crash. These complications required the construction
of a bespoke crash-robust batch processing framework?, an audio-friendly database for storing results

2Gigabytes per second of audio data were observed more than once
3Binary Matlab extensions written in C.
4Runforrest: https://github.com/bastibe/RunForrest
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and datasets®, and a custom Matlab-Python interface®, which were since published as Open Source
Software for others independently of this dissertation.

11.3 Selected Algorithms

In total, 25 PDA implementations were collected over the span of a few years. Most of these were
originally obtained in late 2017, with some later additions when they became available and some
replacements with more recent versions as they were released or found.

The following sections will introduce each algorithm in general terms, with a particular emphasis on
their various goals and their historical context. To emphasize the latter, the algorithms are presented
here in order of their publication.

To gain an impression of the time of the earliest fundamental frequency estimation algorithms
included, they were still before the true integration of computers into the scientific workplace:

“The development of the computer program described here proceeded in two stages.
During the first stage, photographs of the spectrum analyses were taken on motion picture
film for a number of spoken words; then, these analog spectra were converted to corre-
sponding digital data by a manual data reduction procedure. Next, a manual program
for the extraction of pitch from these data was written which consisted of a set of written
instructions that an assistant was to follow in order to determine the pitch frequency from
the digitized Fourier analyses. |...]

During the second stage of the development of the program logic for pitch extraction,
the manual program was converted to a computer program written in FORTRAN language.
[...] The computer program was checked repeatedly against the data and corrected until
the computer output was in complete agreement with the pitch obtained from the manual
program.” [53, p. 2]

It was a different time indeed from today’s heavily computational, digital-first design methods.

A number of even earlier analogue PDAs were excluded from this study on the grounds that they
left no digital implementations behind, and their accuracy has since been made obsolete by digital
methods. A thorough examination of this DSP-prehistory can be found in [59].

The first four PDAs in the following list are included mostly out of historical interest, as they
describe early archetypes that later PDAs will build upon. None of these original algorithms’ source
code could be found, so we partially re-implemented them based on the original publications. The
voicing decision criteria in these algorithms were omitted, however, as important parameters and
thresholds were not included in the original publications and hence deemed non-essential, as today’s
ground truths all include a “true” voicing decision that can be used in lieu of algorithmic ones.

11.3.1 CEP [105] (1967)

Re-implemented in Python, without voicing decision, pitch tracking, or octave error suppression. See
the Appendix for the source code.

Only a few years after the above quote on nascent computer programming was a fully-digital al-
gorithm developed by Noll at the Bell Telephone Laboratories, USA, so as to supply a vocoder with
a pitch estimate for the purposes of low-bandwidth speech transmission. The algorithm is based on
the idea that harmonic tone complexes have a repetitive spectrum, with harmonic peaks at regular

5JBOF: https://github.com/bastibe/jbof
STransplant: https://github.com/bastibe/transplant
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intervals on the frequency axis. In an ideal harmonic tone complex, the peaks are spaced one funda-
mental frequency apart from one another, and detecting this regular spacing equates to detecting the
fundamental frequency.

To estimate this repetitive spacing, the logarithmic spectrum is subjected to a second Fourier
Transform, now called the “Cepstrum”, which exhibits a single peak at the peak-spacing distance
quefrency’ and corresponds to the fundamental frequency of the signal. The origin of this idea is
summarized as follows:

“In the fall of 1959, Bogert (of Bell Telephone Laboratories) noticed banding in spec-
trograms of seismic signals. He realized that this banding was caused by ‘periodic’ ripples
in the spectra and that this was characteristic of the spectra of any signal consisting of
itself plus an echo. The frequency spacing of these ripples equals the reciprocal of the
difference in time arrivals of the two waves. Tukey (of both Princeton University and
Bell Telephone Laboratories) suggested that this frequency difference might be obtained
by first taking the logarithm of the spectrum, thereby making the ripples nearly cosinu-
soidal. A spectrum analysis of the log spectrum then could be performed to determine
the ‘frequency’ of the ripple. In early 1960, Bogert programmed Tukey’s suggestion on a
computer and proceeded to analyze numerous earthquakes and explosions. Tukey, noticing
similarities between time series analysis and log-spectrum series analysis, introduced a new
set of paraphrased terms. The spectrum of the log spectrum was called the ‘cepstrum,’
and the frequency of the spectral ripples were referred to as ‘quefrency.’ Bogert, Tukey,
and Healy published their ideas in an article with perhaps one of the weirdest titles ever
encountered in the scientific literature: ‘The Quefrency Alanysis of Time Series for Echoes:
Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum and Saphe Cracking. In the article,
they very clearly expressed a pessimistic view for achieving adequate classification of seis-
mic events by cepstral techniques. In fact, no definitive indication of focal depth was found.
Their article was issued as an internal Bell Laboratories memorandum before publication
in Rosenblatt’s book. Schroeder read the memorandum and realized that voiced speech
spectra also have ripples, and hence cepstrum analysis might be suitable for vocal-pitch
determination. In June 1962, Schroeder suggested cepstrum-pitch determination as an
area worthy of further study. At that time, he and Atal had just completed a paper on
methods for performing short-time spectrum analyses. Thus, the atmosphere was perfect
for the concept of short-time cepstrum analysis that then developed.” [105, p. 1]

One can feel the excitement of these early days of digital signal processing, when fast digital
computers and linear algebra offered boundless new possibilities, and scores of old ideas were begging
to be translated into the digital realm.

While the paper’s description of the algorithm is thoroughly modern, this is still in the very early
stages of computer programming, as “the program was still very lengthy and required about 0.8 h
to compute the cepstra for about 2 sec of speech. Recently, an algorithm has been developed by
Cooley and Tukey for performing fast numerical Fourier transformations. This algorithm has been
incorporated into the cepstrum program and has resulted in a program about eight times faster than
the previous one.” [105, p. 8] That new algorithm is the Fast Fourier Transform, as it is known today.
Truly, the impact of this invention on digital signal processing cannot be overstated, and it will form
the basis of most later PDAs.

The PDA’s voicing decision is based on the idea of picking a cepstral peak between 1-15 ms, with
a linear weight of 1 at 1 ms and 5 at 15 ms. Afterwards it has an adaptive threshold for picking time-

Ta cepstral frequency, one of the neologisms invented by Bogert, Healy, and Tukey for cepstral analysis (or “quefrency

alanysis”), along with “rahmonics” and “liftering” [109].
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continuous cepstral peaks, while excluding octave errors. The replication dataset re-implementation
picks the weighted peaks, but includes neither a voicing decision nor suppression of octave errors, as
their description lacks certain decision threshold values.

As processing time still represented a large challenge at the time of publication, no comparison or
large evaluation was included in the paper, except that “additive white noise is not too degrading if it
does not destroy the spectral ripples. Actually, a clearly defined cepstral peak has been obtained for
speech signals with a 6-dB signal-to-noise ratio over the 40-msec analysis interval.” [105, p. 15]

Later publications generally refer to this algorithm as the “Cepstrum algorithm” or even shorter
as “CEP”. So popular is this PDA that it was included in the pitch function in the signal processing
toolbox of Matlab 2018a.

11.3.2 AUTOC [140] (1968)

Re-implemented in Python, without voicing decision, pitch tracking, or octave error suppression. See
the Appendix for the source code.

Around the same time as the cepstrum pitch estimator detailed above, another common template
for fundamental frequency estimation was published, which is today known as the “Autocorrelation
algorithm”, or “ACF” for short, by Sondi, also of Bell Telephone Laboratory, USA. The idea is that the
period of a periodic signal is visible as a strong peak in the signal’s autocorrelation function. However,
this is technically only true for perfectly harmonic signals with equal-amplitude harmonics. Speech
signals therefore need to be spectrally flattened in some way before autocorrelation to produce strong
autocorrelation peaks and reliable fundamental frequency estimates.

The paper describes three methods of spectral flattening. After some deliberation, the simplest
of these methods was found to be the most effective: The signal is center clipped, which removes all
amplitudes up to a moving threshold, leaving only the amplitude tips. This effectively removes most of
the formant information, but retains periodicity. The remaining signal is unintelligible, but perfectly
suitable for autocorrelation.

Furthermore, “in at least one type of situation, [center clipping] works more reliably than [...] the
more elaborate cepstrum pitch extractor. This is the case when a voiced segment of speech becomes
almost sinusoidal. (This occurs, for example, if the speech signal is the sound /i/ spoken by a female
and high-pass filtered with a cutoff at about 200 or 300 Hz. This is not a very unusual situation if the
speech has traveled over an ordinary telephone circuit.) Since the success of [the cepstrum algorithm)]
depends upon the presence of a large number of harmonics, these types of pitch extractors are prone
to error in such cases. The absence of a large number of harmonics clearly is not a serious problem
for the center-clipping method” [140, p. 3]. A peak picking and pitch tracking stage then follows,
explicitly adhering to the logic of the cepstrum estimator discussed previously, and again only partly
implemented in the replication dataset for the same reason.

An informal evaluation was conducted with high-pass filtered and low-pass filtered speech with
additional broadband noise. In the same vein as the cepstrum algorithm, the goal was to drive a
speech vocoder, where “the resulting resynthesized speech was judged excellent by listeners in informal
listening tests. None of the usual troubles of pitch doubling and loss of the trailing portions of voiced
intervals was noticeable.” [140, p. 5]

At the time, speech vocoders promised high-efficiency signal transmissions on narrow channels and
promised more efficient usage of the already congested telephone network.
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11.3.3 SIFT [93] (1972)

Re-implemented in Python, without voicing decision, pitch tracking, or performance optimizations.
See the Appendix for the source code.

The spectral flattening idea discarded in the autocorrelation PDA was later reimagined as the
Simple Inverse Filter Tracking (SIFT) algorithm by Markel of Speech Communications Research
Laboratory, USA. An “inverse filter”, or pre-whitening filter, removes the formant structure from a
speech signal, whose pitch period can then be estimated as the delay of the first peak > 2 ms in its
autocorrelation sequence. The pre-whitening filter is calculated with what would later be called linear
predictive coding (LPC), minimizing the influence of linear components, and thereby removing vocal
tract resonances.

A large part of the paper is relegated to performance optimizations, such as subsampling before the
filter calculations to save computation time, and interpolating the position of the resulting maximum
back to the original sampling rate. These optimizations are no longer necessary on today’s hardware,
and have been omitted in our re-implementation. Again, the voicing decision was omitted as well,
which is additionally justified by the authors themselves as “it has been experimentally demonstrated
that the difficult problem of detecting voicing during the transition from voiced to unvoiced interval is
not completely resolved. [...] (It should be pointed out, however, that whenever the SIFT algorithm
failed to extract correct voicing, cepstral analysis also failed.)” [93, p. 10]

The paper closes with a performance evaluation on a handful of short utterances against the
cepstrum algorithm, mostly to prove that it could maintain similar accuracy while being “an order of
magnitude [20x] faster than the cepstral analysis pitch extraction method” [93, p. 8].

11.3.4 AMDF [130] (1974)

Re-implemented in Python, without voicing decision or pitch tracking. See the Appendix for the source
code.

The Average Magnitude Difference Function (AMDF) is a close relative to the autocorrelation
function mentioned before. However, it uses the eponymous average magnitude difference instead
of the multiplication of variously delayed signals. Thus, periodic signals do not produce maxima,
but minima instead. This “anticorrelation” is partly done as a calculation speed improvement over
autocorrelation, and partly as minima near zero were found to be easier to detect than maxima at
arbitrary magnitudes.

An additional performance improvement truncated the auto-subtraction sequence, such that only
short, approximately two-period segments, were compared against each full block of audio data. As
the parameters of this procedure were not fully specified, it has been omitted in our re-implementation,
which uses full-block comparisons. Again, the paper additionally included a complicated and multi-
staged voicing decision, which has been omitted as well.

The evaluation section in the paper compares the AMDF against a simplified autocorrelation
method without center clipping, and finds it to be similarly accurate, although errors in voicing
decisions were found to be of great significance to overall accuracy. Also, “adding noise to the input
signal caused pitch errors to be generated. These errors were speaker dependent but appeared to
consist mostly of pitch doublings occurring at the onset or central portion of voiced sounds. [...] As
the signal-to-noise ratio was varied from 30 dB to 10 dB, the number of errors increased, although not
a substantial amount. A more substantial increase in error was found in going from the uncorrupted
speech to a high [SNR] (30 dB) than in decreasing the [SNR] appreciably. Some evidence is available
which shows that the AMDF remains suitable for pitch extraction down to a 0 dB [SNR]” [130, p. 7].
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The rest of the paper explains the details of running the AMDEF in real-time on commercially-
available computers of the time. While the estimation accuracy and computation speed of the AMDF
do not seem particularly impressive today, the general idea will be re-used in various PDAs in years
after this publication, which makes it significant as a historical artifact.

11.3.5 The 1980s

There is a long gap in between the previous, “historical” PDAs and the subsequent ones. This is
despite the eighties being a fascinating decade for fundamental frequency estimation, with personal
computers finally becoming fast enough to do signal processing on affordable hardware. This processing
power allowed for more complex algorithms to be implemented, such as statistical estimators [117,
126], PDAs based on psychoacoustic models [33, 153], harmonic combs [94, 58|, and phase-based
approaches [38, 20]. However, the resulting PDAs proved mere steppingstones towards more widely
cited later iterations and hardly left usable implementations behind.

Additionally, the newfound computing power allowed for the first large-scale comparison stud-
ies [127, 108, 112, 60]. The first of these, “A Comparative Performance Study of Several Pitch
Detection Algorithms”, by Rabiner, Cheng, Rosenberg, and McGonegal, is particularly noteworthy as
most later comparisons use the error measures and nomenclature defined in this work. These are the
gross pitch error (GPE), fine pitch error (FPE), and voicing decision error (VDE), which are still the
prevailing standard today. The paper compared eight short utterances with manually labeled pitch
using the autocorrelation algorithm, the cepstrum method, AMDF, SIFT, and two additional PDAs
that are not included here. These algorithms were classified as time-domain, frequency-domain, or
mixed-domain, which has also endured as archetypes in recent publications, despite a proliferation of
“mixed” approaches in recent years.

Follow-up work by the same authors [97] added a formal subjective evaluation of these PDAs, and
Oh and Un [108] explicitly extended the evaluation to speech in noise. In general, these comparisons
found the AMDF and autocorrelation methods to work most reliably both for clean recordings and
in noise.

Another seminal work in this time is the book “Pitch Determination of Speech Signals” by Hess [59],
which examines the history and major PDAs of the time in great detail, and—to the best of our
knowledge—coins the term “PDA” for Pitch Determination Algorithm. It also popularized the idea of
using laryngographs as a ground truth for fundamental frequency estimation, which proved tremen-
dously influential in the years afterwards. The book itself neatly bookends the era of sample-by-sample,
often analogue, feature detectors with added periodicity estimators, and serves as a gentle introduc-
tion to the new, digital, block-based approaches (here called “frames”) that are the basis for almost
all PDAs discussed here. The novelty of this idea is captured in the following quote:

“Hence, we do not obtain the boundaries of individual periods, not even the lengths
of individual periods, but rather an estimate of the average period length or fundamental
frequency within a given frame. To detect periodicity at all, at least two periods must
be situated within one frame; otherwise the information of periodicity is lost. Thus a
minimum frame length of two maximum-duration pitch periods must be observed. On the
other hand the [block-based analysis| principle implies that the signal is quasi stationary,
i.e., the extracted parameters can be assumed constant within the frame. Thus the frame
length must not be too large, otherwise the natural change of pitch in the signal may
become significant and may spoil the intraframe estimate of this parameter. For speech
signals, these two conditions are just compatible; they do not yet really conflict. Usual
values for the frame length range between 20 and 50 ms, according to the actual value of
FO in the signal under consideration.
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[...] The discussion up to now already suggests that the majority of the [block-based]
analysis PDAs go digitally. In fact, the analog [PDAs] of this category - not very numerous
anyhow - have mostly been outperformed by their digital ‘colleagues.’” [59, p. 357]

The last prediction proved prophetic, as later algorithms almost exclusively work digitally and use
some kind of block-based approaches. In fact, the book’s broad classification of PDAs into analogue
real-time and block-based algorithms is largely meaningless today, as real-time algorithms all but
ceased to be developed in the following decades.

With the introduction of data-driven PDAs in the 1980s and thoroughly digital workflows also
came the introduction of noise as the main obstacle to fundamental frequency estimation. Before,
PDAs were predominantly judged by their clean-speech accuracy for the purposes of vocoder-based
synthesis, and perhaps when degraded by telephone transmission. But from the 1990s onward, PDAs
needed to remain accurate in the presence of noise. This is perhaps no accident, as the “wireless
revolution” of all-digital GSM mobile phones standardized and legitimized low-bitrate, vocoder-driven
speech transmission at an acceptable speech quality in the early 1990s, thereby obviating the pressing
need for further research into vocoders.

11.3.6 PRAAT [9] (1993)

Implementation by the original authors at https://github.com/praat/praat in the C programming lan-
guage.

With great confidence, Boersma of the University of Amsterdam, Netherlands, introduced
PRAAT’s signal model as

“By definition, the best candidate for the acoustic pitch period of a sound can be found
from the position of the maximum of the autocorrelation function of the sound, while the
degree of periodicity (the harmonics-to-noise ratio) of the sound can be found from the
relative height of this maximum.” [9, p. 1]

Thus the signal model of the PRAAT algorithm is a time-domain definition of self-similar signal
periods. The paper however argues that signal blocks are to be Gaussian-windowed before calculating
the autocorrelation®. Further, autocorrelation must be normalized by the window autocorrelation to
counteract the effects of windowing, which “seems to have gone by unnoticed in the literature” [9, p. 4].
Furthermore, the resulting normalized autocorrelation is to be upsampled with a sinc interpolator.

These considerations seem a bit odd, as there is no obvious need for windowing in autocorrelation-
based period determination algorithms. In fact, without windowing, no bias correction would be
necessary. However, the corrections might be justified as the algorithm uses an FFT-based calculation
of autocorrelation, which out of necessity works on windowed signal blocks.

The authors claim that their improved autocorrelation method is still prone to octave errors,
even for ideal sinusoids or pulse trains. This is corrected in a post processing stage, which seeks to
minimize octave errors by viterbi-searching a pitch track that penalizes large frequency jumps. A
formal evaluation shows the PDA’s effectiveness for sinusoids and pulse trains in low-pass filtered
white noise up to 0 dB SNR, but no comparison or evaluation with speech signals is given beyond
“it works equally well for low pitches (the author’s creaky voice at 16 Hz, alveolar trill at 23.5 Hz,
and bilabial trill at 26.0 Hz), middle pitches (female speaker at 200 Hz), and high pitches (soprano at
1200 Hz, a two-year-old child yelling /i/ at 1800 Hz). The only 'new’ tricks are two mathematically

81t is Hann-windowed at first, but an appendix adds that Gaussian windows are even better. Which makes sense as
they state that side lobes in the window spectrum are problematic for PRAAT.
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justified tactics: the division by the autocorrelation of the window [...], and the ’sin x / x’ interpolation
in the lag domain” [9, p. 14].

More important than the algorithm itself, however, is the release of the Praat [software] for doing
phonetics by computer [10] in 1996 in collaboration with David Weenink. This program includes the
PDA and a powerful graphical user interface for displaying and analyzing speech signals. It is likely
the availability and continuous development of this software that has garnered PRAAT such a lasting
support in the speech analysis community, much more than the individual algorithmic components.

The program is still maintained today, available for multiple operating systems, and includes a
scripting system that allows for unattended use without the graphical interface. The replication
dataset uses PRAAT version 6.0.24, retrieved in January 2017.

11.3.7 RAPT [150] (1995)

Implementation in the VOICEBOX framework by Brookes [14] at http://www.ee.ic.ac.uk/hp/staff/
dmb/voicebox/voicebox.html, written in Matlab, based on a C implementation by the original authors
at http://www.speech.kth. se/wavesurfer/links. html.

Just like the previous PDA, the RAPT PDA by Talkin of the Entropic Research Laboratory, USA,
is a periodicity detector:

“For the purposes of this chapter, [fundamental frequency] is defined as the inverse
of the smallest true period in the interval being analyzed. This definition provides for
the short-time variation in FO that is observable in human speech. As will be seen later,
determination of “true” is the crux of the matter!” [150, p. 2]

This statement is again interpreted as a variant of the autocorrelation algorithm, this time without
windowing, but zero-meaned, and normalized by a signal energy estimate. Candidate pitch estimates
are determined with a moving threshold, and the precise frequency of the maximum is determined
from a parabolic interpolation around the autocorrelation maximum.

As predicted in the introductory quote, this conventional extractor is followed by a rather complex
post processing procedure that forms the true innovation of RAPT: it includes viterbi-searching for
an optimal pitch track with various weighting functions for suppressing octave errors, a low-frequency
bias, and a joined voicing decision based on spectral differences, energy contours, and LPC analysis.
The precise procedure is too complex to reproduce from the publication alone, but C code is provided
by the original authors on their website.

As an evaluation, the PDA “has been used with satisfactory results on speech recordings varying
in quality from noisy telephone to quiet laboratory conditions” [150, p. 20].

The popularity of this PDA in later publications and comparison studies likely stems from a re-
implementation included in the widely cited VOICEBOX toolbox for Matlab by Brookes in 2006 [14],
which was used in the replication dataset as well. This is visible in Figure 11.2 on page 126 as a
sharp increase in mentions of RAPT around 2006. According to its documentation, the VOICEBOX
implementation of RAPT is a straight translation of the original author’s C source code with only
minor modifications.

The RAPT algorithm is sometimes referred to as “Get_ F0” due to the function name in the
original source code.

11.3.8 YIN [24] (2002)
Implementation by the original authors at http://audition.ens. fr/ade/, written in Matlab.
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Like the previous two PDAs, the YIN PDA by de Cheveigné and Kawahara of Ircam-CNRS,

France, is a periodicity estimator, although this time defined rather rigorously:

“The fundamental frequency [...] of a periodic signal is the inverse of its period, which
may be defined as the smallest positive member of the infinite set of time shifts that leave
the signal invariant. This definition applies strictly only to a perfectly periodic signal,
an uninteresting object (supposing one exists) because it cannot be switched on or off
or modulated in any way without losing its perfect periodicity. Interesting signals such
as speech or music depart from periodicity in several ways, and the art of fundamental
frequency estimation is to deal with them in a useful and consistent way.” [24, p. 1]

Instead of relying on the autocorrelation sequence for matching signal periods, they use a square
difference function, similar to the AMDF PDA, as “despite its appeal and many efforts to improve
its performance, the autocorrelation method (and other methods for that matter) makes too many
errors for many applications” [24, p. 3]. They explain this as “the [autocorrelation] is quite sensitive
to amplitude changes. [...] An increase in signal amplitude with time causes [autocorrelation]| peak
amplitudes to grow with lag rather than remain constant [...]. This encourages the algorithm to choose
a higher-order peak and make a ’too low’ error (an amplitude decrease has the opposite effect). The
difference function is immune to this particular problem, as amplitude changes cause period-to-period
dissimilarity to increase with lag in all cases” [24, p. 3]. The authors additionally point out how the
square difference function can be calculated as a sum of autocorrelation terms.

To reduce the influence of low-lag minima, as caused by formants and the zero at origin, the
square difference function is further divided by the signal average up to the lag value. The resulting
“cumulative mean normalized difference function” “starts at 1 rather than 0, tends to remain large at
low lags, and drops below 1 only where [the function] falls below average” [24, p. 4]. Additionally,
octave errors are reduced by picking the lowest frequency of multiple candidate minima, and final
frequency estimates are improved by parabolic interpolation. A post processing step smooths out
estimates slightly to prevent intermittent frequency fluctuations.

At this point, it would arguably be constructive to compare the last three PDAs with regards to
their emphasis on estimator accuracy versus post processing complexity. The PRAAT and RAPT
algorithm, and all four of the preceding “historical” PDAs placed significant effort into their post
processing as a workaround for shortcomings of the main estimator, whereas YIN focuses more so
on the estimator, and with less need for post processing. This was done in part to explicitly avoid
complexity, “as including [complex post processing] complicates evaluation and credit assignment” [24,
p. 11]. With the same reasoning, no voicing decision was included.

In a surprisingly large evaluation section of PDAs across multiple clean-speech corpora, “YIN
performs best of all methods over all databases. Averaged over databases, error rates are smaller by a
factor of about 3 with respect to the best competing method” [24, p. 5]. This includes evaluations of the
aforementioned PRAAT, Autocorrelation, and the Cepstrum method, although their post processing
and voicing decision was disabled and their frequency range was expanded. A laryngograph PDA was
used as ground truth. This evaluation was done on multiple databases, including the KEELFE and
FDA databases used in the replication dataset.

The Matlab implementation by the original authors relies heavily on compiled C code, which needs
to be recompiled for recent versions of Matlab. As the implementation was found to have problems
with high sampling rates, signals in the replication dataset were resampled to 16 kHz before passing
them to YIN.
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11.3.9 SHR [149] (2002)

Implementation by the original authors at https://mathworks.com/matlabcentral/fileexchange/1236-
pitch-determination-algorithm, written in Matlab.

The subharmonics-to-harmonics ratio (SHR) by Sun of Northwestern University, USA, is a different
kind of PDA from the previous ones, in that does not work in the lag domain, and specifically targets
a sore spot in fundamental frequency estimation: speech signals with alternate cycles, which appear
in creaky voices or some pathological voices and produce prominent subharmonic partials.

“The alternate cycles make pitch determination difficult. The solutions [to estimating
pitch in the presence of subharmonics] of most current algorithms either rely on fine-tuning
some threshold parameters based on particular databases or post processing techniques,
such as linear/nonlinear smoothing, dynamic programming, etc. In the present paper, an
alternative approach is explored.” [149, p. 1]

The algorithm posits that likely fundamental frequencies have a large ratio between “harmonic”
bins, spectral bins at integer multiples of a candidate pitch, and “subharmonic” bins, at integer
multiples of half the candidate pitch.

This is a significant development in a lineage of harmonic-comb/harmonic-sieve PDAs working
in the magnitude spectrum [94, 58], last seen in this list with the CEP PDA from 1967. These
PDAs correlate synthetic comb spectra at various candidate pitches with a short-time spectrum to
find likely fundamental frequencies, not entirely unlike the cepstrum method discussed earlier, but
without the logarithm and with arbitrary comb shapes. The innovation of SHR is the inclusion of a
subharmonic comb, and thereby a measure not just of harmonic energy, but simultaneously a rejection
of non-harmonic energy.

As a slight contradiction to the above quote, a complex post processing stage selects the most
likely pitch of two candidates and makes a voicing decision based on a noise floor estimate, the signal
energy, signal correlation, and zero-crossing rate.

The publication evaluates two versions of SHR with the FDA and KFEELFE database, and compares
them against RAPT, PRAAT, and a variant of the autocorrelation method. Error measures are the
usual voicing error, gross pitch error, and fine pitch error. In defense of their premise, they conclude
“that [the most difficult speakers| indeed contain more ’irregular’ speech cycles and appears to have
low and rough voices, whereas [the easier speaker’s] speech seems to be more 'regular’” [149, p. 4].
Contrary to its stated purpose, however, SHR’s accuracy does not perform relatively better than other
PDAs for these voices.

While the originally published website and SHR’s source code are no longer available, the original
author has published a Matlab implementation of the algorithm on the Mathworks File Exchange.
This version appears to include additional post processing procedures not documented in the original
publication and is used in the replication dataset.

11.3.10 YAAPT [69, 172, 173] (2002-2008)

Implementation by the original authors at http://www.ws.binghamton.edu/zahorian/yaapt.htm, written
in Matlab.

YAAPT, or Yet Another Algorithm for Pitch Tracking, developed by Kasi and Zahorian at Old
Dominion University, USA, and others” has seen multiple publications over time, with seemingly ever-
growing complexity. The latest iteration has multiple interlocking pitch trackers, with features in

9possibly including Princy Dikshit and Hongbing Hu
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both the time and frequency domain. In the words of the authors, “Although methods similar to all
the individual components of YAAPT have been used to some extent in previous FO trackers, these
components have been implemented and integrated in a unique fashion in the current algorithm.” [173,
p. 12]

The resulting algorithm is indeed uniquely elaborate, and estimates the fundamental frequency
in no less than three separate signal representations: as a RAPT-like normalized auto-correlation
of a band-passed signal, the same of a squared band-passed signal, and a soft spectral comb of the
squared band-passed signal. Each has their own peak-picking method with their own viterbi-search,
either on the full signal, or a voiced-only concatenated signal and multiple voicing determination and
octave-error-suppression stages using additional full-signal context information. It is safe to say that
this is by far the most complex PDA discussed thus far, and well beyond the scope of this section to
describe fully.

Unsurprisingly, “ YAAPT is quite demanding [computationally] due to the variety of signal process-
ing approaches used and then combined in the complete algorithm.” [173, p. 12] In fact, the authors
themselves state that “it could be questioned whether or not both the temporal and spectral tracks
are needed and the extent to which each of these sources of information contributes to the accuracy
of the FO tracking” [173, p. 8]. However, their evaluation of the PDA’s various components finds that
“the combination of the temporal and spectral tracks results in better performance than using any
individual component, illustrating the benefits of using both temporal and spectral information” [173,
p. 9.

A wider comparison with other PDAs, using the KEFELE and FDA speech corpus in white noise and
babble noise, shows YAAPT outperforming PRAAT, RAPT, and YIN in terms of gross pitch errors.
However, these results are also compared to previously published comparison studies, and “although
test conditions and parameter settings are intended to be identical, clearly, there are differences since
the results obtained with YIN in this study and those obtained with YIN in the previous studies are
significantly different” [173, p. 11].

This vividly illustrates the need for the replication dataset developed in the present study.

Source code for YAAPT in Matlab is available on Zahorian’s website. The replication dataset uses
version 4.0 from 2016.

11.3.11 SWIPE [18] (2007)

Implementation by the original authors used to be available at http://www.cise.ufl.edu/~acamacho/
english/curriculum. html, written in Matlab. Still accessible on the Internet Archive.

The SWIPE PDA by Camacho at University of Florida, USA, is another harmonic comb PDA, but
this time not with discrete and sharp comb teeth but a cosine shape instead that smoothly connects
positive harmonic peaks with negative subharmonic valleys. Both the harmonics and subharmonics
are weighted to match the sensitivities of the human auditory system, and the correlation is carried
out in an ERB-warped, Hann-windowed spectrum.

Interestingly, spectral amplitudes are compressed with a square root instead of a logarithm, as
“the use of the logarithm of the spectrum in an integral transform is inconvenient because there may
be regions of the spectrum with no energy, which would prevent the evaluation of the integral, since
the logarithm of zero is minus infinity. But even if there is some small energy in those regions, the
large absolute value of the logarithm could make the effect of these low energy regions on the integral
larger than the effect of the regions with the most energy, which is certainly inconvenient.” [18, p. 51]

The primary problem of harmonic combs, according to the publication, are octave errors. Like
any harmonic comb, SWIPE still matches a pitch similarly well as double or half the pitch. To reduce
this tendency, the SWIPE-prime PDA uses a cleverly modified comb with all non-prime comb teeth
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removed. Thus, an accidental pitch halving correlates fewer comb teeth than the true pitch.

SWIPE and SWIPE-prime were evaluated against PRAAT, CEP, RAPT, SHR, YIN, and seven
other PDAs on three speech databases, including FDA and KEELE. This evaluation overlaps signifi-
cantly with SHR’s evaluations. Results, however, differ strongly. In particular, SWIPE’s comparison
consistently favors male voices for all PDAs, where no such bias exists in the other comparison.

Until very recently, source code for the SWIPE and SWIPE-prime PDA was available on the
author’s university website, but this is no longer online. However, a printed copy is still appended to
the publication and the original website is still available on the Internet Archive. In other publications
and the replication dataset, the name “SWIPE” typically refers to the SWIPE-prime PDA, and the
distinction between the two is ignored.

11.3.12 STRAIGHT [73] (2008)

Implementation by the original authors at https://github.com/HidekiKawahara/legacy_straight, written
in Matlab.

STRAIGHT is “a speech analysis, modification, and synthesis system” developed by Kawahara at
Wakayama University, Japan. As the original publication on the subject explains [71],

“The central idea of the proposed method considers the periodic excitation of voiced
speech to be a sampling operation of a surface S(w,t) in a three-dimensional space defined
by the axes of time, frequency, and amplitude; these axes represent the global source
characteristics and the shapes and movements of articulation organs. In this interpretation,
a periodic signal s(t) with a fundamental period 7, is thought to provide information about
the surface for every 7, in the time domain and every f, = /7, in the frequency domain. In
other words, voiced sounds are assumed to provide partial information about the surface.
The goal of spectral analysis that enables flexible manipulation is to recover the surface
S(w, t) using this partial information.” [71, p. 3]

The publication then extends this fascinating view of speech to a signal model that is neither
strictly harmonic nor strictly periodic. Accordingly, fundamental frequency estimation cannot rely
on periodicity or harmonicity, and instead measures the instantaneous frequency of the fundamental
component. This is one of the most rigorous definition of “fundamental frequency” possible. However,
the history of STRAIGHT is tumultuous, with quite a number of publications over the years that con-
tain multiple, varying interpretations. For example, a later iteration of the PDA used autocorrelation
on various spectrally flattened frequency bands instead [70].

The TANDEM-STRAIGHT approach from 2008, which is included in the replication dataset, in-
stead aims to produce an altered spectrum with reduced temporal and spectral modulations, which
allows traditional harmonicity-detection algorithms to work on originally non-harmonic signals. This
is implemented using a combination of two spectra of the same signal block, with different time win-

2 [43 )

dows that compensate for each other’s spectral minima. This “temporally stable”, “interference-free’
STRAIGHT spectrum serves as a smooth approximation of the formant envelope without any tempo-
ral or harmonic structure. An additional TANDEM spectrum is derived to have a similar envelope,
but with sinusoidal modulations in the spectrum for harmonic tone complexes. Dividing these spectra
produces a spectrally flat “fluctuation spectrum” that only contains the harmonic structure.

The fundamental frequency is extracted from this fluctuation spectrum with a weighted Fourier
transform of the spectrum and a peak picking algorithm, somewhat similar to the cepstral PDA dis-
cussed earlier. According to the authors, this PDA operates “pitch-synchronously or pitch-adaptively
with temporal resolution comparable to that of the fundamental period. Both TANDEM and
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STRAIGHT spectra simultaneously satisfy a finer temporal resolution requirement and essentially
yield pitch synchronous analysis without the need for precision in window positioning” [73, p. 2].

Such a high temporal resolution would serve to bridge the gap between the older, pitch-synchronous
analogue PDAs, and the new, noise-robust short-time PDAs, and might be desirable for musical
applications.

The popularity of this method must be influenced by the large number of publications it has gar-
nered over the years [71, 70, 73, 76, 72, 74, 75]. Although evaluations of some versions of STRAIGHT
were published, none seem to be using the newest TANDEM-STRAIGHT PDA discussed above. The
version of the software used in the replication dataset was originally obtained by email request, but
has since been moved to a public location on Github. It must be assumed that later mentions of
the “STRAIGHT” or “TANDEM” PDA typically refer to this implementation instead of the earlier,
source-code less variants.

11.3.13 DIO [100] (2009)

Implementation by the original authors as part of the WORLD framework used to be at http:
//ml.cs.yamanashi.ac. jp/world/, written in Matlab, still available in the Internet Archive. A newer
version is available at http://www.kisc.meiji.ac. jp/~mmorise/world/english/, and a C and Python ver-
ston has since been published at https://github.com/mmorise/World.

The “Distributed Inline-filter Operation”, or DIO, of Morise at Kwansei Gakuin University, Japan,
was specifically designed for real-time applications for singing voices. As such, it explicitly optimizes
for clean recordings.

The estimator pre-processes the signal with a set of very steep low-pass filters at various cutoff
frequencies of human singing voices. Each of these candidates is then weighed by a “fundamentalness’
score, which is the variance between four period detectors, one of signal peaks, one of valleys, one
of rising zero crossings, and one of falling zero crossings. The longest candidate period with a zero
fundamentalness is taken as the fundamental frequency.

This is truly a modern version of the analogue period detectors of yore, although extended by par-
allel evaluation of a low-pass filterbank. A comparison with literature results from YIN, STRAIGHT,
AUTOC, and CEP on the clean-speech FDA corpus indeed shows somewhat middling accuracy, which
is explained as “[STRAIGHT] is the best of all methods, but its processing time was much longer than
[DIO], which performs better than the conventional methods without post-processing” [100, p. 3].

However, DIO is part of the WORLD speech synthesis framework, and has garnered a number of
citations due to this inclusion. The source code in the replication dataset is the original version in
Matlab, which has since been superseded by a newer implementation to C as part of the WORLD
framework. It is otherwise referred to as “DIO” or “WORLD?” in later publications.

)

11.3.14 SAFE [22] (2010)

Implementation by the original authors at http://www.seas.ucla.edu/spapl/weichu/safe/ in the C pro-
gramming language.

The SAFFE algorithm by Chu and Alwan of the University of California, USA, or “Statistical Algo-
rithm for FO Estimation for both clean and noisy speech” marks a phase change in PDA development.
From this point onwards, most PDAs consider the estimation of clean speech fundamental frequencies

only of academic interest, and identify the real challenge in robustness to noise!°.

10SAFE is not the first PDA in history to focus on accuracy in noise, merely the first one in this list. But its publication
date at the beginning of a new decade is a convenient inflection point in the narrative, and a good proxy for the cultural
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The algorithm itself is our first specimen of a new breed of statistically motivated approaches that
define harmonics not in terms of spectral amplitudes, but as maxima in a probability space. In this
case, the SAFE algorithm defines harmonics as peaks in a probabilistic signal-to-noise ratio that is
derived from a number of simplifications and assumptions to bend the endless varieties of speech and
noise spectra into a mathematically tractable shape.

In essence, an estimate of the background noise is obtained from the first and last blocks in the noisy
recording, assuming that those contain no speech and that the noise is quasi-stationary throughout
the file. It then calculates an SNR measure between the local spectrum and the noise estimate. Peaks
in the difference between a strongly smoothed and a weakly smoothed version of this SNR are selected
as harmonics. Finally, a Bayesian estimator is trained on these harmonics and various parameters,
and a maximum likelihood estimate for a set of candidate fundamental frequencies is calculated.

A post processing stage viterbi-searches an optimal pitch track and suppresses octave errors. How-
ever, it explicitly does not deal with unvoiced frames, and ignores them with the help of a voicing
decision ground truth.

The SAFE algorithm is then trained on a part of the KEELE dataset, and compared to RAPT,
PRAAT, TEMPO, and YIN on the FDA and KEELE dataset in varying levels of white and babble
noise from the NOISEX corpus. This evaluation concluded that “the SAFFE algorithm has the lowest
GPE when the SNR is at or below 5 dB under white noise, and at or below 10 dB under babble noise.
[...] Although there is a mismatch between the KEELFE [training set] and FDA [test set| corpora, SAFE
still has the lowest GPE on FDA under low SNR conditions as it does for the KEELE corpus” [22,
p. 4].

The SAFE algorithm is provided as C source code for a command line application, and was
compileable without trouble in 2018. Since it expects audio data with a sampling rate of 16 kHz, data
was resampled if necessary before passing it to SAFE. The replication dataset uses a version of SAFE
downloaded in late 2018.

11.3.15 SRH [31] (2011)

Part of the COVAREP [27] framework at https://github.com/covarep/covarep, written in Matlab, in
collaboration with the original authors.

The publication for this PDA by Drugman and Alwan of the University of Mons, Belgium starts
with “this paper focuses on the problem of pitch tracking in noisy condition [...] using harmonic
information in the residual signal” [31, p. 1], and again highlights the changed priorities of the new
decade: The performance in noise is the forefront in fundamental frequency estimation.

Like the SIFT PDA mentioned earlier, the Summation of Residual Harmonics, or SRH, is based
on an auto-regressive LPC filter for pre-whitening and the removal of vocal tract effects. Instead of
autocorrelation, however, an SHR-like harmonic comb with negative comb teeth at subharmonics is
used on the residual spectrum to estimate candidate fundamental frequencies, and to make a voicing
decision. Octave errors are minimized by limiting fundamental frequency candidates to within plus-
or-minus one octave around the mean pitch of the entire recording, figuring that it “can be indeed
assumed that a normal speaker will not exceed these limits” [31, p. 2].

The second contribution of this publication is its thorough and exemplary evaluation section that
measures not only gross pitch errors, but also voicing decision errors, fine pitch errors, and FO frame
errors (union of GPE and VDE). These error measures are calculated for RAPT, SHR, STRAIGHT,
PRAAT, and YIN with the FDA and KEELFE databases, corrupted with noise signals from the NOI-
SEX database.

shift.
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The results are, “In clean speech, it is seen that [SRH] give a performance comparable to other
techniques. [...] On the opposite, the advantage of SRH is clearly noticed for adverse conditions. In
9 out of the 10 noisy cases (5 noise types and 2 genders), SRH provides better results than existing
methods” [31, p. 3]. This is hardly surprising, as none of the other methods was explicitly designed
for noisy conditions, but nevertheless marks the change in priorities in the state of the art.

As a corollary to the focus on accuracy in noise, voicing activity determination in noise is no longer
trivial. The comparisons therefore show a strong implicit (GPE) and explicit (FFE, VDE) emphasis
on voicing decision errors, and special reference is made to the quality of SRH as a voicing detector.
This will be another recurring theme in the succeeding years.

Source code for the SRH algorithm is made available as part of the COVAREP repository for
collaborative voice analysis for speech technologies. The replication dataset uses the Matlab imple-
mentation in v1.4.1 of the COVAREP from October 2015. Another version was published as part of
the pitch function in the signal processing toolbox of Matlab 2018a. As SRH only works for sampling
rates of 16 kHz, all recordings in the replication dataset were resampled accordingly before passing
them to SRH.

11.3.16 SACC [86] (2012)

Implementation by the original authors as part of the LabROSA project at http://labrosa.ee.columbia.
edu/projects/SAcC/, written in Matlab.

The Subband Autocorrelation Classification algorithm, SACC, by Lee and Ellis of Columbia Uni-
versity, USA, is the first instance in this list of a new kind of PDAs that explicitly relies on machine
learning techniques for fundamental frequency estimation, and implicitly eschews the need for inter-
pretable results in exchange for ease of implementation. However, as will become clear later on, this
distinction is more fluid than a firm decision, with various levels of machine learning taking over more
or less of the algorithmic design.

As far as the SACC algorithm is concerned, a multi-layer perceptron classifier is trained on the
principal components of the normalized autocorrelations of subbands from an 48-channel auditory
filter bank. Thus, elements of traditional PDAs, such as the filter bank and the autocorrelation, are
still present. One could argue that it is merely the post processing of these autocorrelations that
is relegated to the machine learning system. Be that as it may, the autocorrelations are reduced to
ten bins per channel using principal component analysis, and fed to a three-layer perceptron with
an 800-node hidden layer for joint fundamental frequency estimation and voicing determination. A
viterbi search then finds the optimal fundamental frequency track.

As is now expected in the 2010s, the optimization target of the PDA is noisy speech, explained as:
“when acoustic degradations such as frequency band limitation and additive noise are introduced, the
problem becomes still more challenging. This work is motivated by the problem of identifying and rec-
ognizing speech signals in low-quality radio transmissions, which we simulate, based on measurements
of a real narrow-FM radio channel” [86, p. 1].

The machine learning stage, however, requires considerably more data for training than any of
the previous PDAs. A training dataset was constructed from multiply resampled versions of each
recording, filtered variously, and mixed with noise recordings at multiple SNRs. According to the
publication, the same dataset was used for training and for evaluation.

The resulting PDA was evaluated with the KEELE and FDA corpora in various levels of pink noise,
and compared against YIN, SWIPE, and others. Interestingly, they evaluated voicing errors separately
from estimation errors, and found that voicing false positives!! dominated at high SNRs, while false

Hestimated voiced, although truly unvoiced
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negatives'? were more prevalent at low SNR. With the growing importance of noisy conditions and

voicing determination, these kinds of statistical evaluations increasingly become critical for a thorough
examination of PDA accuracy.

Source code for SACC in heavily-optimized Matlab with various functions implemented in C for
speed is provided by the original authors on their website. The software includes various pre-trained
models, and the replication dataset uses the default model trained on the RATS [159] dataset for a
sampling rate of 16 kHz. Accordingly, all samples in the replication dataset were resampled to 16 kHz
before applying SACC.

11.3.17 BANA [56] (2012)

Implementation by the original authors at http://www2.ece.rochester.edu/projects/wcng/code. html,
written in Matlab.

The BANA PDA, named after its two main authors, Ba and Na (et al.) of University of Rochester,
USA, is a modern re-combination of two older approaches, the cepstrum PDA from 1967, and the
period histogram from Schroeder in 1968 [135].

First, the signal is band-pass filtered between 50 Hz to 3000 Hz, and the five lowest and most
prominent spectral peaks in this frequency range are selected as harmonics.

Much like the period histogram PDA, a histogram of candidate fundamental frequencies is created
from peak frequencies at conspicuous multiples of each other. For example, if two neighboring peak
frequencies are a multiple of two of each other, this might identify the first one as the fundamental;
a multiple of 1.5 would occur between the second and third harmonic and indicate a fundamental of
half the first peak frequency. Additional candidate fundamental frequencies are added from a cepstral
analysis, and from the frequency of the first peak. These candidates are collected in a histogram, and
a confidence score is calculated from the number of candidates in close proximity to one another.

A pitch track is generated by viterbi-searching the histograms of each block and penalizing both
frequency jumps and confidence jumps. Although the PDA claims to be optimized for high levels of
noise, no particular algorithmic steps are taken to consider noise.

The evaluation section of the paper compares BANA to PRAAT, YIN, CEP, the harmonic product
spectrum® against a hand-labeled ground truth of an unspecified number of speech recordings in
various SNRs of NOISEX noise.

It is surprising that this combination of very old and outdated fundamental frequency algorithms
works as well as it is shown to do. Perhaps this is another instance of a simple estimator, vastly
improved by powerful post processing that elevates it beyond the accuracy of its ancestry.

11.3.18 MBSC [151] (2013)

Implementation by the original authors at http://www.seas.ucla.edu/spapl/shareware.html, written in
Matlab.

In contrast to most of the previous PDAs, which mostly adhere to one or two guiding principles,
the MBSC' algorithm, or multi-band summary correlogram by Tan and Alwan of the University of
California, USA, combines a large number of techniques into easily the most complex PDA in this list.

The time signal is split into four overlapping 1-kHz filter bands between 0 and 3.5 kHz to capture
at least two harmonics per filter, as “a signal contain[ing] more than 1 harmonic of the target voiced

Zestimated unvoiced, although truly voiced
3possibly confused with the period histogram, which was published in the same referenced paper and would be more
appropriate


http://www2.ece.rochester.edu/projects/wcng/code.html
http://www.seas.ucla.edu/spapl/shareware.html

11.3. SELECTED ALGORITHMS 119

speech, its envelope would typically oscillate at an amplitude modulation frequency corresponding to
the inter-harmonic separation” [151, p. 3].

From these filter bands a Hilbert envelope is calculated and mean-normalized. An additional
non-envelope band is added for the lowpass band. Each band’s spectrum is comb-filtered with a
set of raised-cosine spectral combs and matching subharmonic combs at various candidate pitches.
Additionally, a normalized autocorrelation function is calculated for each harmonic comb band.

In several stages, candidate pitches are removed; if their harmonic-to-subharmonic ratio is not a
local maximum, if their harmonic-to-subharmonic ratio is < 1, if the maximum is not a power-of-two
of other maxima, if the corresponding autocorrelation maximum does not agree with other candidates.
Finally, the two best candidates are selected per filter band.

The autocorrelation functions of the harmonically filtered envelopes of the remaining candidates
are combined across candidates and across the four filter bands, weighted by their harmonic-to-
subharmonic ratio and cross-band agreement. This final multi-band summary correlogram forms an
“improved” autocorrelation sequence that yields pitch estimates from weighing, peak-picking, parabolic
interpolation, and viterbi-searching, like many other autocorrelation-based PDAs.

“Together, the proposed signal processing schemes (subband multi-channel comb-
filtering, [harmonic-to-subharmonic based] channel-selection-and-weighting, stream-reliability-
weighting) help to enhance the maximum MBSC peak at the most likely pitch period,
which in turn improves the accuracy of pitch estimation, as well as [voicing] detection.
The variability of the maximum MBSC peak amplitude with SNRs is reduced, such that
robust [voicing] detection is achieved by simply applying a constant threshold on this single
feature, followed by median filtering — without requiring additional features” [151, p. §]

This is an extreme example of shifting the balance between estimator complexity and post pro-
cessing complexity far towards the former. It must be said that this approach does not lend itself
to theoretical reasoning about the algorithm’s components, or their individual merits, although this
might be a moot point with the recent shift towards entirely opaque machine learning models.

A thorough evaluation section compares the PDA accuracy and its voicing decision on the FDA
corpus with RAPT, YIN, SHR, SWIPE, and a PDA called WWB [169]'* and noise from the NOISEX
corpus. The KEELE corpus was used to train MBSC and the other PDAs’ voicing thresholds, and
some PDAs were altered to ensure all-voiced output for one evaluation and a wider pitch range. All
signals were resampled to 8 kHz, and optionally filtered to a telephone-like bandwidth.

Although this comparison makes a few assumptions that might not agree with some of the PDAs
signal models, it is very thorough and includes many signal conditions. MBSC' is shown to perform
particularly well in moderate to heavy noise. Interestingly, no comparison was conducted with the
authors’ own SAFE PDA, published three years prior.

)

11.3.19 PEFAC [45] (2014)

Implementation by the original authors as part of the VOICEBOX framework at http://www.ee.ic.ac.
uk/hp/staff/dmb/voicebox/voicebox. html, written in Matlab.

PEFAC is the “Pitch Estimation Filter with Amplitude Compression”, “a pitch estimation algo-
rithm robust to high levels of noise” by Gonzalez and Brookes of the Imperial College, UK. Straight
from the title, this sets the stage for another modern, noise-focused algorithm.

MMWWB had to be heavily modified to work in a comparison setting, which is why it wasn’t included in the replication
dataset despite being available and popular.
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The introduction has a broad summary of various algorithmic approaches. On the topic of the
popular class of autocorrelation-based PDAs, it says that “Autocorrelation-based pitch detectors per-
form well in moderate noise levels since the [autocorrelation function] of an aperiodic noise source
typically falls off rapidly with lag. At negative SNRs, however, a voiced speech signal whose energy is
dominated by low-order harmonics will not generate a distinct peak in the [autocorrelation function]
and [...] reliable pitch estimation becomes impossible” [45, p. 2].

Instead, PEFAC is loosely a harmonic comb PDA, which is claimed to be advantageous in noise
“since most of the energy of a voiced speech signal is normally concentrated into a small number of
harmonic peaks, these remain detectable even at poor SNRs” [45, p. 2]. The comb in question is a
mean-normalized reciprocal of a raised-cosine shape with ten comb teeth, i.e. a soft comb with sharp
positive teeth and shallow negative gaps. It is correlated with a shaped spectrum in the log-frequency
domain, thus attenuating the influence of higher harmonics.

A spectral shaping stage forces the spectrum to conform to a long-term average speech spectrum
shape, which reduces low-frequency and narrow-band noises that would otherwise warp the spectral
shape. “The motivation for this is that if the shape of the average power spectrum of clean speech
is known a priori, deviations from this shape indicate either a non-uniform channel response or the
presence of noise” [45, p. 3.

The fundamental frequency is estimated by viterbi-searching up to three candidates per frame,
while maximizing spectral peak amplitude, maintaining a stable fundamental frequency, and staying
close to the median pitch.

An independent voicing decision is made on the log-mean power of the shaped spectrum of each
frame, and the ratio of harmonic-peak power to the frame’s total power using Gaussian mixture
models.

The Gaussian mixture models and viterbi parameter weights were trained on a NOISEX and
TIMIT training set, with a consensus truth from PRAAT, YIN, RAPT, and manually corrected
where needed. An evaluation was carried out with two databases, including the TIMIT test set, in
various noises from NOISEX, where PEFAC is compared to YIN, RAPT, and another PDA, using
an uncommonly-tight +5% GPE limit. Particularly in white noise and at very low SNRs, PEFAC is
shown to work very well.

The popularity of PEFAC was no doubt helped by its inclusion in the popular VOICEBOX frame-
work, and, as of 2018, its availability as part of the pitch function in the signal processing toolbox of
Matlab.

11.3.20 DNN/RNN [50] (2014)

Implementation by the original authors at http://web.cse.ohio-state.edu/pnl/software.html, written
in Matlab, included both in its DNN and RNN wversions.

As a direct extension of PEFAC, the DNN/RNN algorithm by Han and Wang of Ohio State
University, USA, uses the very same spectral shaping and logarithmic-frequency soft comb, but replaces
the peak picking post processing with a deep (DNN) or recurrent (RNN) neural network. This is
justified as “Although the [PEFAC] feature vector is designed to deal with noisy speech, [its| rule-
based pitch candidate selection may lose useful information because it simply ignores non-peak spectral
information. In our study, we treat [the PEFAC feature vector| as the extracted feature and employ
supervised learning to estimate pitch probability, i.e. to learn the mapping from the features to the
pitch frequencies. We expect supervised learning to yield better results” [50, p. 2].

The DNN is constructed with an input layer of three blocks, three hidden layers with 1600 sigmoids
each, and an output layer with 68 softmax units for frequencies between 60 and 400 Hz and one
unvoiced state. The RNN has two hidden layers with 256 sigmoids each, only the second of which is
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recurrent. As with other machine learning publications, there is little justification given for the choice
of these parameters, and some training parameters even remain entirely unspecified, such as learning
rates and initialization schemes.

The networks are trained with the TIMIT corpus with a PRAAT-generated ground truth and
NOISEX noises at SNRs around 0 dB. The resulting “posterior” is transformed into a likelihood by a
separately learned prior and an empirical correction factor, and viterbi-searched and smoothed for a
fundamental frequency estimate. The combination of a viterbi-search and an RNN is curious, however,
as “the output of the RNN is the posterior probability given an observation of a sequence rather than
a single frame, which does not exactly satisfy the assumption of the [hidden Markov model] and the
Viterbi algorithm, but we ignore this for simplicity” [50, p. 4].

Essentially, this amounts to PEFAC, but with more complex post processing.

The resulting algorithm was evaluated on the TIMIT database and NOISEX noises, as well as
FDA and another noise database, with the same +5% GPE and VDE as in the PEFAC paper. Its
accuracy and voicing decision were compared against PEFAC, SACC and two other PDAs. Where
PDAs could be trained, they were trained on the same data as DNN/RNN. In the results, DNN/RNN
is particularly strong at negative SNRs, with little benefit to differentiate between DNN and RNN, and
is reported to generalize well to untrained speech and noise corpora as well as reverberant conditions.

Since the neural networks were seemingly trained on 16 kHz data, all audio material in the repli-
cation dataset was resampled accordingly.

11.3.21 KALDI [42] (2014)

Source code “based on” the publication at https://github.com/LvHang/pitch, in the C programming lan-
guage, by some of the original authors.

The KALDI PDA by Gahremani at al. from John Hopkins University, USA, part of the auto-
matic speech recognition (ASR) toolkit of the same name, is “an algorithm that produces pitch and
probability-of-voicing estimates for use as features in automatic speech recognition systems. These fea-
tures give large performance improvements on tonal languages for ASR systems, and even substantial
improvements for non-tonal languages” [42, p. 1].

This PDA is explicitly based on RAPT, but expanded in several ways. The signal is low-pass
filtered, energy-normalized, and zero-meaned before calculating a normalized autocorrelation much
like in RAPT. Instead of a threshold, a viterbi search chooses an optimal pitch track through the
entire autocorrelation space of each signal.

The end goal of the algorithm is to drive an ASR system. In addition to the fundamental frequency
estimate, a voicing decision is calculated from an approximation of a log-likelihood ratio from each
frame’s normalized autocorrelation. Two additional voicing determination features are forwarded to
the ASR system as well.

An evaluation was carried out on the clean-speech KEELFE corpus in comparison with YIN, RAPT,
SACC, SWIPE, YAAPT, and one more PDA in terms of GPEs. All further evaluations use the word
error rates typical in ASR research, which find the KALDI PDA better suited for this task than SACC,
YIN, or RAPT, especially for pitch-sensitive tonal languages.

11.3.22 NLS [104, 103] (2016)

Implementation by the original authors at https://github.com/jRjaer/fastFONls, written in Matlab. A
different version also by the original authors used to be available at http://vbn.aau.dk/en/publications/
fast-fundamental-frequency-estimation-making-a-statistically-efficient-estimator-computationally-


https://github.com/LvHang/pitch
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efficient(c9604a99-5146-40fa-b973-7feeal fal3ea7).html and is also included in the dataset.

The non-linear least squares algorithm by Nielsen et al. of Aalborg University, Denmark assumes
a harmonic spectrum in slowly-varying noise, and derives a maximum likelihood estimator, which “is
the most accurate estimator in statistical terms. When the noise is assumed to be white and Gaussian,
the [maximum likelihood] estimator is identical to the [NLS] estimator” [103, p. 1]. The algorithm is
quoted to be based on earlier astronomical work from 1991 [126].

This is a member of a class of fundamental frequency algorithms that has not been discussed yet,
where a parametric estimator is derived directly from a signal model, an even stronger assumption than
general parametric estimators such as the aforementioned SAFFE. As the PEFAC paper states, “The
advantages of the parametric approach to pitch estimation are that the assumptions about the signal
are explicit, the limitations of an algorithm are often predictable, the performance can be optimal
in a well defined sense and in some cases a Cramér-Rao lower bound can be calculated or estimated.
The disadvantage of the approach is that the performance may degrade when the (often quite strong)
modeling assumptions are not satisfied.” [45, p. 1]

The resulting PDA closely resembles a harmonic comb, albeit with dynamically adjusted teeth
weight, which is “statistically efficient asymptotically. That is, it has the optimal estimation accuracy
when enough data are available” [103, p. 3]. The math for this operation is quite complex, and involves
a number of simplifying assumptions to run at acceptable speeds.

An evaluation was carried out with harmonic tone complexes in white noise, exactly satisfying the
signal model. In this case, the NLS algorithm “can attain the Cramér-Rao lower bound and is the
most accurate method for low-fundamental frequencies” [103, p. 10]. Results are compared to YIN,
which is shown to be less accurate, particularly at negative SNRs.

It should be noted that the publication is unusually coy about practical matters and mentions
human speech only in passing. The source code repository, however, clearly targets this application,
although with the following caveats: “Please note that the code only contains a pitch estimator and
NOT a pitch tracker. The difference is that a tracker contains a smoothing step on top of the estimator.
The smooting step is there to minimise the risk of, e.g., octave errors (aka pitch halving) by smoothing
out the estimates produced by the estimator which typically analyse the data on a segment-by-segment
basis. Of course, our estimator can also be used inside a pitch tracker. For the best performance, we
recommend that the smoothing step by Tabrikian et al. is used.” and “For voiced speech, where the
lowest fundamental frequency is typically bigger than 80 Hz, [...] the estimator typically works well
down to a segment length of 12.5 ms. [...] In our experience, the estimator does typically not break
down if the noise is not white and Gaussian. However, if the noise is coloured and has most of the
energy at the lower frequencies, then the estimator can suffer from problems with octave errors. In
this case, we recommend that some kind of pre-whitening is applied to the data prior to estimating
the fundamental frequency.”'?

The replication dataset includes two implementations of the NLS algorithm, both implemented in
Matlab. These were published in 2015 and 2016 by the same authors, yet seem to have been developed
separately.

11.3.23 CREPE [79] (2018)
Implementation by the original authors at https://github.com/marl/crepe in Python.

The convolutional representation for pitch estimation, CREPE, from Kim et al. at New York
University, USA, is a “data-driven pitch tracking algorithm, [...] which is based on a deep convolutional

5from https://github.com/jkjaer/fastFeNls, downloaded Jun 2020
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neural network that operates directly on the time-domain waveform.” This approach is motivated by
reframing the rising popularity of machine learning techniques in signal processing as a removal of a
defect:

“A notable trend in [older PDAs]| is that the derivation of a better pitch detection
system solely depends on cleverly devising a robust candidate-generating function and/or
sophisticated post-processing steps, i.e. heuristics, and none of them are directly learned
from data, except for manual hyperparameter tuning.” [79, p. 1]

The neural network in question has an input layer of 1024 audio samples, six hidden layers, one 2048-
neuron latent representation, and one 360 sigmoid output layer that corresponds to pitch estimates
between 32.7 Hz and 1975.5 Hz in cent steps. The final fundamental frequency estimate is given as
the weighted average of the output layer.

This neural network was developed, trained, and tested with partitions of 6.16 h of synthetic music
made from “a fixed sum of a small number of sinusoids, meaning the dataset is highly homogeneous
in timbre” as well as 15.56 h of more complex synthesized music “with a perfect f0 annotation that
maintains the timbre and dynamics of the original track” [79, p. 3]. These signals contain 25 different
synthesized instruments and singers.

An evaluation measured the algorithm’s accuracy in the musical equivalent to GPE against a
variant of YIN and SWIPE in various realistic and synthetic noises. These evaluations show that
“CREPE performs better in all cases where the SNR is below 10 dB while the performance varies
depending on the spectral properties of the noise when the noise level is higher, which indicates that
our approach can be reliable under a reasonable amount of additive noise.” Of particular note is
CREPEFE’s very small fine pitch error, which “suggests that CREPF is especially preferable when even
minor deviations from the true pitch should be avoided as best as possible” [79, p. 3].

While most of these examples cater more towards musical applications than speech, frequent
references are made to speech in the publication and source code repository. The published model
provided with the source code is in part trained on singing voices.

11.3.24 MAPS (Chapter 8)

Original implementation, as detailed in chapter 8, and available online at https://bastibe.github. 10/
Dissertation-Website/maps/index.html in various programming languages.

The magnitude and phase spectrogram based fundamental frequency estimator, MAPS, by Bech-
told et al. of Oldenburg University, Germany, was developed as part of the present dissertation, and
is a harmonicity detector in the frequency domain. It is comprised of two parts, a harmonic comb in
the magnitude spectrum, and a harmonic sawtooth in the time derivative of the phase spectrum. This
dual signal model is motivated as “It uses more of the available information in the signal, and it can
use phase spectral information to account for octave ambiguities in the magnitude spectrum. Finally,
it can use the magnitude spectral information to help the phase spectrum discern salient parts from
non-salient ones” (p. 64).

The magnitude harmonic comb is a variant of PEFAC’s soft comb, in that it is a mean-normalized
soft comb with sharp positive teeth and shallow negative gaps. However, the comb teeth correspond
to window function spectra instead of reciprocal raised cosines. This is also applied in linear instead
of logarithmic frequency, necessitating a separate frequency weighting to attenuate the effect of higher
harmonics.

The phase sawtooth follows the shape of the instantaneous frequency deviation, a variant of the
time-derivative of the phase spectrum. Since the phase spectrum is naturally confined to values
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around zero, it can be subtracted from the signal phase spectrum, instead of the correlation used in
the magnitude.

These two estimators, the magnitude correlation and the instantaneous frequency difference, are
combined in a Bayesian voicing determination framework trained on speech from a PTDB-TUG corpus
training set and noise from the QUT-NOISE corpus. The result “does not estimate the probability
of general voice activity within a frame, but the specific confidence that a pitch can be estimated
accurately at the current frame” (p. 71).

An evaluation compared MAPS to PEFAC, RAPT, and YIN with a PTDB-TUG corpus test set
and noise from QUT-NOISE. Aside from a GPE and FPE evaluation, considerable effort was made
to highlight the algorithm’s voicing decision, which is unusually conservative, but “its positive VAD
decisions almost always result in accurate and precise estimates, as evidenced by the negligible false
positive rate and very low GPEs. Furthermore, this remains true even at low SNRs, even though false
negatives clearly deteriorate at low SNRs” (p. 74).

Since the algorithm was trained at 48 kHz, all audio data is resampled accordingly in the replication
dataset. Source code for the PDA is available in Julia, Python, and Matlab, and the Python version
was chosen for the replication dataset, as it was the original, and fastest, implementation.

11.4 Literary Survey

The 25 PDAs presented in the previous chapter span more than half a century, and a wide variety
of different methods, from analogue-inspired period detectors in the time domain, to autocorrelation-
based methods with various pre- and post processing methods, to harmonicity estimators in the
frequency domain, to statistical methods, and opaque machine learning PDAs. As more processing
power became available over the years, complexity rose in lockstep, and ever more elaborate schemes
were attempted.

All of these methods aim to estimate the pitch of the human voice, nebulously defined either
from a time-domain periodicity measure, or frequency-domain harmonicity, or later, a database of
recordings with pre-computed ground truths. As these definitions of pitch or fundamental frequency
differ, so does their performance for different signal conditions. Hence, comparisons between PDAs
were conducted to assess their differences.

Figure 11.1 shows the results of clean-speech comparisons published in the above 22 publications.
This includes every tabulated Gross Pitch Error measure of clean-speech FDA or KEELFE recordings
that occurred in at least two papers. On the one hand, a good consensus has emerged with regards
to common databases and error measures. On the other hand, implementations clearly differ wildly,
as do results.

The CEP and RAPT PDAs appear particularly variant in Figure 11.1, perhaps because their
apparent simplicity invited frequent re-implementations with subtly varied details. More complex al-
gorithms had to rely on implementations by their original authors, which made results more consistent.
Nevertheless, there are always outliers beyond any reasonable standard deviation. This highlights once
again the need for a consistent framework for comparisons, such as the replication dataset.

These 25 PDAs in the replication dataset make up only a very limited subset of the full breadth of
fundamental frequency estimation research. In the last thirty years from 1990-2020, a literary search
turned up 851 publications on the subject, as detailed in Section 9.2.

Figure 11.2 shows mentions of the 25 PDAs above in these publications over the years. Over
this time period, the yearly volume of publications on PDAs has roughly quadrupled, with a sharp
increase around 2005, no doubt spurred by the new availability of serious computing power and the
Internet. This allowed much broader access to other groups’ source code and evaluation databases, as
well as the processing power to conduct comparisons and evaluations on meaningfully large datasets.
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Figure 11.1: Violin plot of GPE of PDAs for clean speech on the KEELE (O), FDA (x), or both (-)
corpora, according to the PDAs’ publications. Black symbols are from the PDAs’ own publication, if
it included a comparison.

Consequently, the number of mentions of published PDAs rose even more significantly in this time
frame than the total volume of publications.

Of particular popularity were CEP, PRAAT, YIN, and STRAIGHT; AMDF and RAPT, and later
PEFAC then showed intermittent popularity, according to Figure 11.2. Interestingly, this list is dif-
ferent from anecdotal evidence of frequently compared PDAs, probably due to source code availability
issues.

Figure 11.3 graphs mentions of the same PDAs across publications. Indeed, the majority of
mentions are in a small number of journals, most notably the International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), the INTERSPEECH conference, the European Signal
Processing Conference (EUSIPCO), the IEEE/ACM Transactions on Audio, Speech, and Language
Processing (TASLP)!®, and the IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), in order of overall popularity.

Interestingly, the relative popularity of YIN, RAPT, PRAAT, and STRAIGHT seem to be mostly
driven by the ICASSP, INTERSPEECH, and TASLP publications. These trends are indications of a
cultural norm in these journals. This norm defines YIN, RAPT, PRAAT, and possibly STRAIGHT
and PEFAC as archetypes of fundamental frequency estimation that must be mentioned or compared
against when publishing new PDAs.

In contrast, far fewer mentions of these PDAs originate from the EUSIPCO and WASPAA con-
ferences, which thus buck this cultural norm, despite being similarly popular for publications on
fundamental frequency in general (see table 9.2 on page 82).

These 851 publications include works by 1731 authors from all over the world. To gain a sense of

6including the older IEEE Transactions on Speech and Audio Processing
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Figure 11.2: Mentions of each PDA in the replication dataset in papers on fundamental frequency
estimation from 1990 to 2020. Only counts papers that contain both a variant of the PDA’s name,
and the author’s last name. Black line indicates total number of papers per year. Sum of PDAs can
be higher than total number, since paper can mention more than one PDA.

their scientific interactions, Figure 11.4 shows a network graph of the most significant 280 authors,
accounting for 234 publications and their scientific relationships to one another. Authors were identi-
fied by their first and last name!”, as recorded in the papers’ publication metadata, which may have
duplicated some authors if they used different spellings in different publications.

Particularly interesting are dense clusters of prolific authors, which indicate close-knit groups with
frequent intra-group collaborations. The largest of these is the group involving Jesper Jensen, Mads
Christensen, and Andreas Jakobsson of Aalborg University and Lund University, which have released
48 publications in their group since 2006, involving 43 coauthors.

Other prolific groups with at least ten publications are centered around Keikichi Hirose of the
University of Tokyo, Japan with 14 publications and 18 coauthors, the group of C. Shahnaz and
M. Ahmad of Concordia University in Quebec, Canada with 16 publications and 10 coauthors, and
DeLiang Wang of Ohio State University, USA with 14 publications and 10 coauthors.

The density of clusters in Figure 11.4 is proportional to the number of papers published together.
It is heartening to see that some research groups indeed collaborate on doing science, particularly in
Asian countries. Most groups are centered around one or two professors, and involve many one-off
collaborators, presumably students. A few groups also habitually coauthor within the group.

In general, however, the clusters are separate from one another, and show little cross-group col-
laboration. Perhaps surprisingly, many groups’ work spans multiple decades. Fundamental frequency
estimation thus remains a fruitful field of study despite more than fifty years of research already having

"more accurately, the first sequence of non-whitespace letters in the first name, and their full last name, to be at least

somewhat resilient to different spellings, while still properly differentiating between similarly named authors.
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Figure 11.3: Mentions of each PDA in the replication dataset per journals in papers on fundamental
frequency estimation from 1990 to 2020. Only counts papers that contain both a variant of the PDA’s
name, and the author’s last name. Colored journals have at least 10 publications.

been published.

With such an abundance of PDAs published over the years, many people have endeavored to cate-
gorize them by some measures. For example, the book Pitch Determination of Speech Signals by Hess
in 1983 [59] includes an impressive map that classifies algorithms into a hierarchy of algorithms, with
the biggest split between (analog) real-time algorithms and (digital) short-term PDAs. Short-term
PDAs are further subdivided into correlation-based time-domain and frequency-domain PDAs. The
latter split between algorithms is still popular today [148, 41], where one class of PDAs searches for
patterns in the time domain and another seeks them in the frequency domain. Alternative classifica-
tions split PDAs by whether they fit a complete model of speech and noise to a signal, or maximize
some fitness measure of speech only [21, 45]. Conversely, most current classifications follow depending
on whether that model was crafted by humans or inferred by a machine learning process [79].

Nowadays, as PDAs are becoming more and more complex, it could be argued that such classifica-
tions are becoming meaningless. Even classical time-domain PDAs, such as DIO, SACC, and KALDI,
now include frequency-domain features such as viterbi-searches or filterbanks. Simultaneously, opaque
deep-learning-based methods might calculate cross-domain features internally that were not even ex-
plicitly designed at all. The only tentative classification still applicable is whether the PDA’s under-
standing of pitch is based on a production-centric periodic signal model, or a perception-motivated
harmonic model. But even that is more of a characterization of the authors’ beliefs than of algorithmic
parameters.
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Figure 11.4: Network of significant authors and their papers on fundamental frequency estimation.
Only networks with at least five publications are included. Each bubble represents an author with the
size proportional to the number of papers on PDAs. Distance between authors is roughly inversely
proportional to the number of papers published together. Bubble color indicates age of the latest
paper from 1990 (blue) to 2020 (yellow). Author names in black have ten or more papers. Grey
author names have five or more papers, and are included only where there was space on the graph for

them.
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11.5 Dataset Definition

The last chapters detailed the landscape of PDAs, and their historical and current context. To make
sense of this large plurality of methods, a framework of comparison is required. Thus, the stage is now
set to actually assemble the replication dataset from PDAs, corpora, and performance measures.

The preceding sections established the following PDAs as worthwhile for comparison: CEP, AU-
TOC, SIFT, AMDF, PRAAT, RAPT, YIN, SHR, YAAPT, SWIPE, STRAIGHT, DOI, SAFE, SRH,
SACC, BANA, MBSC, PEFAC, DNN, KALDI, NLS, CREPE, MAPS. Chapter 9 detailed the fol-
lowing speech corpora: CMU-ARCTIC, FDA, KEELE-mod, MOCHA-TIMIT, PTDB-TUG, TIMIT;
and the noise corpora NOISEX, QUT-NOISE. To compare PDA estimates of these data, performance
measures were calculated against the corpus ground truths, the consensus truth from Chapter 10, and
each PDA’s own clean estimate.

No exhaustive comparison of all combinations of speech and noise can be possible, as recordings
can be mixed with an infinite variety of sections for each noise recording, and at an infinite number of
SNRs. Thus, some kind of selection had to be made, both to keep the dataset at a manageable size,
and to keep the computational requirements feasible.

Noise recordings and speech corpora are already built to be somewhat homogeneous and can
therefore be randomly sampled. SNRs are mostly interesting in the range between mostly clean
(20 dB SNR) to mostly noise (-20 dB SNR), and typically remain at a steady upper or lower bound
beyond. As results typically vary relatively smoothly with SNR, the SNR range can be evaluated in
somewhat coarse 5 dB steps.

In total, the replication dataset contains the results of running 25 PDAs on 6 speech corpora, 35
noise recordings from two noise corpora, at 9 different SNRs, each repeated 20 times with different
speech recordings and noise sections. This constituted a total of 945000 experiments.

Additionally, an upper bound on estimation accuracy was established with 20 repetitions of syn-
thetic speech-like harmonic tone complexes of 9 fundamental frequencies between 80 and 260 Hz in
white noise in 9 SNRs for another 40500 experiments.

The resulting fundamental frequency tracks alone combine to about 6 GB of data, and the perfor-
mance measures an additional 600 MB.

11.5.1 Experiments

To run these experiments, speech signals and sections of noise signals were mixed at a given SNR level.
For this to work, signals needed to be of compatible length, sampling rate, and channel count, which
meant cutting, resampling, and downmixing.

Noise or speech recordings with more than one channel were downmixed by using only the first
channel and ignoring all other channels.

The noise signal section was randomly chosen to start within 0-3 min for the NOISEX corpus, or
5-25 min for the QUT-NOISE corpus. As speech signals were guaranteed to be shorter than 30 s, this
ensured that noise recordings of sufficient length were able to be extracted. In the case of QUT-NOISE,
the first and last minutes of noise recordings were ignored, as they frequently contained calibration
signals that would disturb experimental results. Thus, regretfully, these specifications ignored parts
of the noise recordings to simplify computations.

Between signal and noise, the speech signal was deemed more important. Thus, if sampling rates
between signal and noise differed, the noise signal was resampled to the sampling rate of the speech
signal, and not vice versa, using the resampy!® library.

8nttps://github.com/bmcfee/resampy, version >0.2
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SNR

Mixing speech and noise at a specific SNR was done by adjusting the noise power such that speech
sections were at the selected SNR. The procedure used in the replication dataset accomplished this
by applying a gain factor on the noise signal, but explicitly did not touch the speech signal in order
to keep it as true to the original recording as possible.

To calculate the gain factor on the noise signal, an estimate of the speech level and noise level were
obtained in two different ways:

Since the noise recordings were comparatively stationary, the noise level was simply the root mean
square (RMS) level of the entire noise section.

The speech signal however contained pauses and short stretches of silence at the beginning and end
of each recording. Thus the level was instead calculated from active speech segments only: For each
20-ms block in the speech signal, a logarithmic RMS level in dB was calculated, and a threshold set
as the mean between the 5th and 95th percentile of these RMS levels to classify speech from silence.
The overall speech RMS level is then calculated only from the speech signal blocks that exceeded the
threshold.

This procedure is somewhat arbitrary. Different thresholds or block lengths could have been chosen,
which would have resulted in slightly different level estimates and bias the SNR somewhat differently.
However, there does not seem to be a consensus on these matters, and many publications indeed do
not even specify their particular method for estimating the SNR; hence a simple method was given
preference.

Additionally, the replication dataset needed to be entirely reproducible by new PDAs; thus, a
simple procedure was chosen instead of a possibly more “correct” one so as to aid future scientists in
producing comparable results.

Summary: Experimental Parameters

In summary, each experiment had the following parameters:

e« PDA name

¢ speech recording name

e speech corpus name

e noise recording name

e TNOise corpus name

e noise segment start time in seconds
« SNR in dB

e repetition index

e sampling rate in Hz

From these parameters, the exact test signal was able to be reconstructed from the corpora, thereby
enabling experimental reproducibility and validation.

Whenever a PDA had algorithmic parameters, they were either left at their default values if present,
left at the default values provided by the PDA’s examples or documentation, or specified in the PDA’s
description at the beginning of this chapter.

The source code for running these experiments, including source code for all the PDAs, have been
included on this dissertations’ website at https://bastibe.github.io/Dissertation-Website/
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Synthetic Signals

In addition to the speech recordings detailed above, the replication dataset also includes a shorter
evaluation of synthetic harmonic tone complexes, so as to gain insight into the PDAs’ performance
measures in ideal conditions.

For this purpose, speech-like harmonic tone complexes with ten harmonics and variable fundamen-
tal frequency were mixed with white noise. These harmonic tone complexes were perfectly harmonic
and perfectly periodic, and thereby satisfied the signal models of most PDAs, while still mildly resem-
bling voiced speech.

Fundamental frequencies were modulated at 1 Hz, with an amplitude of v/2 around the base fom>
such that

folt) = fopV2 (1 + sin (27t)) (11.1)

The harmonic tone complex was then constructed from ten modulated harmonics of this funda-
mental frequency track:

HTC(t) = icos (/to o pf;’fT) dT) (11.2)

Finally, the result was low-pass filtered with a first-order butterworth filter at 2000 Hz to approx-
imate the spectral characteristics of human speech.

The replication dataset includes five seconds of these signals for fundamental frequencies ranging
from 80 Hz to 260 Hz in 20 Hz increments, and SNRs from -20 dB to 20 dB in 5 Hz increments.

11.5.2 Evaluation

In addition to the fundamental frequency estimates of each test signal and PDA, the replication dataset
contains pre-calculated performance measures for the experiments. The following sections provide a
precise definition of each performance measure, and how to calculate it.

These includes common performance measures such as the gross pitch error and fine pitch errors,
as well as evaluations not commonly seen in publications, like octave pitch errors, gross remaining
errors, and fine remaining bias.

All performance measures were carried out with five different ground truths:

o Speech corpus ground truth (if available) with estimated VAD (if available)

» Speech corpus ground truth (if available) with speech corpus VAD (if available)
o Consensus truth with estimated VAD (if available)

o Consensus truth with consensus VAD

e Clean estimate as ground truth with clean estimated VAD

The last one of these uses each PDA’s own estimate without noise as ground truth for a noisy-
speech estimate. It thus provides a baseline of how robust a PDA is to noise, without considering
other estimation errors.
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Preprocessing

PDAs estimate fundamental frequency differently in terms of their time bases, in how they report
missing data such as VAD negatives, and in terms of how (and whether) they report their VAD
estimates.

As such, as a baseline, all of these estimates had to reflect a comparable format. For the purpose of
the replication dataset, this meant interpolating fundamental frequency estimates to a common time
base. To avoid interpolation errors, the replication dataset works on each ground truths’ time base
and chooses the nearest estimate for each instance.

Since a number of PDAs report VAD-negative pitches as 0 Hz, all other PDAs’ VAD-negative
pitches were also set to 0 Hz. This is unfortunate, as it discards possibly recoverable data in some
cases; however, not doing so would disadvantage the PDAs without VAD-negative estimates, and thus
create an unfair comparison. In general, VAD estimates were treated as unvoiced if their voicing
predictor is < 0.5, and voiced otherwise.

If a PDA did not have a VAD, the consensus truth’s VAD was substituted. This provided a slight
advantage to these PDAs when evaluates against the consensus truth, as they were incapable of VAD
errors in this case.

Gross Pitch Error (GPE)

The most important performance measure for fundamental frequency estimation is the gross pitch
error, the percentage of pitches where the estimated pitch f (f) deviates from the true pitch f,.(t)
by more than 20 %:

Af(t) >0.2A0(t
pp_ Ze[A70) 20200 )
> [v®) ]
with the quotient between estimate and truth denoted as
fest (t) ‘
Af(t) =[5 —1 11.4
( ) ftrue(t) ( )

and normalized to frames that are voiced both according to the PDA and the ground truth:

U(t) = ftrue(t) # 0A fest(t> 7& 0 (115)

where t is the arbitrary time index of the ground truth, and [-]; is the Iverson Bracket, which is 0
or 1 depending on the logical proposition inside. As mentioned before, VAD decisions are at this point
encoded into the frequency estimates, which is either positive for VAD-positive, or zero otherwise.

The value of +20% is somewhat arbitrary, and GPEs have been variously defined with +£10% or
even +5%. However, +20% seems to be the most common definition and suitable for a human or
prosodic understanding of pitch, where fine details are less important than the overall pitch shape.
Musical applications might want to choose a stricter standard, such as half semitones (£3%).

Furthermore, the GPE is only defined for frames that are voiced both in the ground truth and in
the estimator. This is necessary, as some estimators and truths do not provide estimates for unvoiced
frames. In the above equations, VAD negatives are assumed to be f., = 0.

The normalization to all correctly voiced frames is again somewhat arbitrary and has been defined
differently in a few cases. Truthfully, however, these details are often not defined at all and implicitly
bias the data. Options include all ground-truth voiced frames, or all speech frames. The normalization
to all correctly voiced frames is a reasonable option, as it gives a good estimate of the PDA’s best-case
accuracy, when the frequency estimate agrees with the VAD.
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Fine Pitch Error (FPE)

The fine pitch error further investigates grossly correct frames, and is the mean error of grossly correct
estimates,

FPE = mean (Af(t)‘Af(t) <0.2A v(t)). (11.6)

Again, there are varying definitions with, for example, a standard deviation instead of the mean
error, or a frequency difference instead of the quotient. Their meaning, however, remains very similar,
and the mean error is at least easily interpretable with respect to the GPE, having a maximum of
10 % for entirely random pitches.

High/Low Octave Pitch Error (OPE)

Octave errors are a subset of gross errors that happen to be at an integer multiple of the true pitch.
They deserve specific mention, as they are a common error mode of PDAs, where the correct periodicity
or harmonicity is found, but a subharmonic is mistaken for the fundamental:

S, AFE) — [AFDO]] <01 A L0 > 12 Aot ]

OPE i = ftrue t) — 117
ST L7

opp, _ 2 LIAf® —1AF®]] <014 Ll <08 A0 ()] 1Ls)
fow >, [v(t) ] '

OPEboth - OPEhigh + OPE10W7 (119)

where |-] denotes rounding to the nearest integer. The first term in the numerator selects pitches
within +10% of every integer multiple of the true pitch, the second term excludes the true pitch itself,
and the third term selects only voiced ¢t. Octave errors are a very specific kind of error and thus use
a narrower +10% definition than the 420% “gross” margin of the GPE.

Gross Remaining Error (GRE)

Any gross error that is not an octave error is a remaining error

> [AFE) = [AF@)]] =2 0.1 ANAf(E) 2 0.2 Ao(t) ]

> [o®) ] '

These errors are misclassifications that do not bear any resemblance to the true fundamental
frequency. In general, GRE + OPE, ;, = GPE.

GRE =

(11.10)

Fine Remaining Bias (FRB)

If a PDA can’t estimate the true pitch or its harmonic, its guess is often not quite random. Most
PDAs have a built-in bias towards higher or lower pitches, which is particularly visible in the absence
of a clear pitch. Hence, the FRB is the median of gross remaining errors

FRB = median (Zt((% ‘Af(t) —AF®T] > 0.1 AAF(E) > 0.2 A v(t)) . (11.11)

These biases are often indicative of small implicit tendencies towards over- or under-estimating
pitches in general.
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Voicing Decision Errors

A different class of performance metrics is not concerned with the value of the estimated fundamental
frequencies, but with the voicing decision of the PDA, if available. These are standardized measures,
such as the true positive rate, false positive rate, or false negative rate. All of these are based on
simple counts of voicing decisions:

True Positives: TP =Y [ fie(t) # 0 A fou () # 0], (11.12)

True Negatives: TN = zt: [ fiue(t) = O A four (£) = 0] (11.13)

False Positives: m@:}éﬂ@m@)ZOAﬁﬁ@)¢0L (11.14)

False Negatives: FN = i: [ Fiue(t) # O A four (£) = 0] (11.15)
7

From these, more comparable error rates are derived:

TP
True Positive Rate: TPR = TP+ FN (11.16)
False Positive Rate: FPR = _FP (11.17)
FP+ TN
False Negative Rate: FNR = _EN (11.18)
FN+TP

Another way of summarizing these features is precision and recall, which are “what proportion of
the voiced estimates are truly voiced?” and “what proportion of the truly voiced frames are estimated
as voiced?”, respectively. These give a more accurate characterization of the voicing estimator’s
characteristics:

.. TP
Precision: PRE = ﬁ (1119)
TP

A handy single-number summary of these measures is the F-score, which summarizes the trade-off
between precision and recall as

PRE-REC
(82 -PRE) + REC’

Fy=(1+p%)- (11.21)

where [ indicates that recall is considered S times more important than precision.

Summary: Performance Measures

The replication dataset includes the following performance measures:

o Gross Pitch Error, the proportion of estimates within +20% of the ground truth

e Fine Pitch Error, the mean error of grossly correct estimates
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o High/Low Octave Pitch Error, the proportion of grossly incorrect estimates at integer multiples
of the ground truth

e Gross Remaining Error, the non-octave gross errors

e Fine Remaining Bias, the median of non-octave grossly incorrect estimates

o True Positive Rate, the proportion of all voiced frames that are classified as voiced

o False Positive Rate, the proportion of all unvoiced frames that are classified as voiced
« False Negative Rate, the proportion of all voiced frames that are classified as unvoiced

o F, a measure for the equally-weighted combination of precision and recall

Of these, the gross and fine pitch errors are very common in the literature, while the others
are expansions on existing performance measures, or entirely new additions. In particular, many
publications include a woicing decision error metric that is differentiated into false negatives and
positives in the replication dataset.

11.6 Computational Considerations

The replication dataset had to run each PDA on a large number of audio signals of varying lengths.
Along with the experimental parameters and results, the computation time of every experiment was
recorded in the dataset. This information can be used to gain insight into the computational perfor-
mance characteristics of the PDAs.

Most PDAs used in this study were implemented in the programming language Matlab, except for
SAFE, PRAAT and KALDI, which used C, and SIFT and MAPS, which used Python. SACC and
YIN additionally used custom MEX-files (compiled C code for use in Matlab).

All experiments were run on a 16-core AMD Ryzen 1950X in 2019 using Matlab 2019a and Python
3.6 on Linux. All PDAs were run in a purpose-built multiprocessing framework, running 16 processes
in parallel. For the purposes of these experiments, multithreading and the JVM in Matlab were
disabled using the -singleCompThread and -nojvm command line arguments. The total computation
time for all experiments was roughly 500 processor core days.

Figure 11.5 shows the computation time each PDA took for audio recordings of various durations.
Each PDA’s computation time can be split into a fixed startup/shutdown time, and a run time that
scales with the duration of the recording. From the graph, the various PDAs can be broadly classified
into one of three categories:

o Near-constant-time algorithms that show little scaling with duration (DIO, KALDI, MAPS,
PRAAT, SHR, SIFT, SRH, YAAPT, YIN). These PDAs are employable in most situations, and
computation time can be traded for latency if need be.

o Near-real-time algorithms that run close to real time (BANA, CREPE, NLS2, RAPT, RNN,
SACC, SAFE, SWIPE). The slope of the run time is roughly parallel to the real-time line.
Whether these PDAs can be used for an application depends on the target hardware.

o Offtine algorithms that require significantly longer than real time (MBSC, STRAIGHT). The
run-time slope of these PDAs is significantly steeper than real-time, or exponential. These kinds
of algorithms can not be used in real-time.

Depending on the application and the target hardware, these characteristics for computation time
can be highly relevant and may effectively make certain PDAs unusable in some cases. In fact, a
few additional PDAs were available, but could not be included in the comparison, as they consumed
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Figure 11.5: Time it takes to calculate the fundamental frequency for audio recordings of various
lengths. Solid colored lines marks median, and shaded areas the 5 % and 95 % percentile of calculation
times. All times include startup and shutdown times of their programming environment. If the PDA
was implemented in Matlab, an additional grid line marks 5 s as the approximate Matlab startup time.
A solid diagonal line marks real time (1 s per 1 s). All times in seconds.

too much computation time or memory to be practical. It should be noted that all included PDAs
scaled linearly with recording duration, and merely differ in the scaling constant. Thus, the scaling
categories above are approximations only useful for current, desktop-class computers as of 2019, and
PDAs can change category on faster or slower computers.

11.7 Replication of Publications

One purpose of the replication dataset is to be able to replicate the results from existing publications.
However, as figure 11.1 showed, comparable comparison studies are rare, so perfect replication is
unlikely.

Figure 11.6 shows the same graph as figure 11.1 before but having been calculated from the
replication dataset. AUTOC, CEP, and SWIPE were excluded from this graph, for reasons that will
become apparent later. Even though some trends are replicated, the majority of results is very different
from the literature.
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Figure 11.6: Partial recreation of the literature quotes from Figure 11.1 using the replication dataset.
Grey outlines show literature quotes from Figure 11.1. Uses 20 dB SNR of white noise instead of clean
recordings, as the replication dataset does not include truly clean recordings.

These differences are likely not failures of the individual publication or the replication dataset.
Instead, they are simply differences in implementations of PDAs, signals, and performance measures.
This undoubtedly highlights the need for standardization of these parameters, without which no
meaningful conclusions can be drawn from comparing evaluation results of different publications.

Additionally, we looked at the results from two recent comparison studies, and recreated their
results using the replication dataset. The first study that was replicated was [148], which used the
FDA and KEELFE corpus in some NOISEX noises to compare AMDF, AUTOC, BANA, CEP, MBSC,
PEFAC, SWIPE, YAAPT, and YIN in terms of GPE. Figure 11.7 recreates graphs 1-6 from [148]. In
both graphs, results for BANA, YIN, and YAAPT are similar to the publication, CEP and PEFAC
are at least of similar shape in the same order of magnitude; but AMDF, AUTOC, SWIPE, and MBSC
are very dissimilar. Incidentally, the latter category is also the worst performers in [148], which might
imply an implementation issue in the publication.

The second study that was replicated was [146], which compared RAPT, YIN, and PRAAT on
clean recordings of the PTDB-TUG corpus. Their results, as well as the results from the replication
dataset, are shown in Table 11.1. Results, however, are only comparable for RAPT.

Table 11.1: Recreation of Table 2 from [146], as well as results from the replication dataset.

PDA GPE GPE | FPE FPE
[146] repl. | [146] repl.

PRAAT | 2.09 486 | 1.97 3.94
RAPT | 467 420 | 2.63 2.00
YIN 1.39 11.39 | 1.86 3.53

Neither of the two comparison studies rigorously defined the preparation of their audio signals or
the calculation of their error measures. This, again, highlights the need for the replication database
that includes both pre-computed, verifiable fundamental frequency estimations of various audio signals,
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Figure 11.7: Partial recreation of comparison studies’ results using the replication dataset. The left
graph recreates Figures 1-3 from [148] in solid lines, with replication dataset results as dashed lines.
The right graph recreates Figures 4-6 from [148] in the left, dark bars, with replication dataset results
as the adjacent, lighter bars.

as well as verifiable, pre-computed performance measures. Without such a reference, cross-publication
comparisons seem essentially impossible, as these two studies and Figure 11.1 illustrated.

11.8 Conclusions

As both the comparison of evaluations in Figure 11.1 and the comparison between comparisons in
Figure 11.7 and Table 11.1 showed, there is very little consensus with respect to performance measure
implementations, PDA implementations, and preprocessing methods. At least, however, speech and
noise corpora and performance measure descriptions were widely compatible.

It is unlikely that yet another comparison study such as the present one would change this de-
plorable situation. Yet, a common standard is sorely needed. Otherwise, ever more sophisticated
PDAs would require ever more complex comparisons as well, which could quickly become impractical
computationally, as the complexities of data and software involved compound.

On the topic of computational complexity, a number of PDAs could not be included in our study
because their code could not be made to run on our compute cluster due to performance optimizations.
For scientific code, simplicity and explanatory power are still far more important than computational
considerations.

The replication dataset represents not only our attempt at providing the largest comparison dataset
yet, but more importantly to serve as a common ground from which future comparisons may benefit.
In particular, our rigorous definitions of error measures and signal conditions, as well as our published
source code, should enable a truly reproducible evaluation environment, which has so far been absent
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from publications.

Ideally, future comparisons would not need to re-calculate the entire comparison dataset but could
instead refer to the performance measures in the replication dataset that have already been calculated.
To ensure compatible results for their own PDAs, future researchers could rely on the open and
accessible replication source code for adding their own comparisons as well.

While this scenario might be far-fetched, the replication dataset is nevertheless the most complete
and expansive dataset of speech and noise corpora and PDAs yet created, and will serve at least as a
robust foundation for an in-depth comparison of PDAs and databases in the next chapter.



Chapter 12

A Comparison of Methods

Abstract

A plethora of algorithms have been proposed for estimating the fundamental frequency of voiced
speech. These pitch determination algorithms (PDAs) and their estimations are typically validated
with acoustic speech and noise recordings from one of a number of speech corpora and acoustic noise
databases. While a number of comparison studies between PDAs have been undertaken, few have
tried to quantify differences between corpora, or ascertained the suitability of various algorithms for
different voices. Such deeper comparisons are difficult not only scientifically, but also in terms of
engineering due to the large amount of data required to yield meaningful results. Undeterred, this
chapter evaluates a large number of fundamental frequency estimation algorithms, speech and noise
databases, and performance measures. As a result, algorithms are characterized in unprecedented
detail, which reveals hitherto unknown biases and limitations for all investigated PDAs.

12.1 Introduction

The analysis of human speech and its pitch is a vibrant area of research, and instrumental to a wide
variety of applications from speech recognition and transcription, speaker or language identification,
to more abstract technologies such as speech compression and transmission. Depending on their
specific use case, PDAs are optimized for different data sets and applications and vary in behavior
and complexity. However, after publication, they tend to be used with audio recordings that were not
part of the training data set and/or in circumstances that might deviate from the authors’ intents.

It is thus of great interest to compare PDA accuracy and evaluate their suitability for various
speech analysis tasks. In order to evaluate the accuracy of PDAs, a large and diverse data set is
required that spans both, the original training data and “realistic” unseen data. PDA estimates
must then be compared against a known ground truth. Chapter 9 detailed a number of well-known
speech databases for pitch determination, some of them with a dedicated fundamental frequency
ground truth. Chapter 10 furthermore introduced a new consensus truth that is better optimized
for evaluating PDA accuracy, and available for more databases. Table 12.1 summarizes these speech
databases, and Table 12.2 summarizes the noise corpora used in this study.

All of these corpora contain recordings of short sentences, except for KEFLFE, which includes
multiple sentences per recording. To make the KEELE corpus more comparable, this chapter will
henceforth always use KEFELFE-mod, introduced in Chapter 9.4, which is the same audio data, cut into
shorter segments.

Most PDAs include some kind of implicit or explicit training for a specific source of truth and
should be expected to perform best if evaluated against similar ground truths. These might be a

140
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Table 12.1: Common speech corpora for fundamental frequency estimation.

Corpus ‘ Samples Speakers  Audio Speech f, Lar. fs License
FDA [5, 4] 100 2 0:06h 0:04h v V 20 kHz N/A
KEELF [122] 10 10 0:06h 0:04h v V 20 kHz NCT
PTDB-TUG [119] 4718 20 9:36h  3:28h v V 48 kHz ODBL?
TIMIT [40] 6300 630 5:23h  4:00 h 16 kHz nonfree
CMU-ARCTIC [80] 15603 18 13:53 h 10:35 h v 16 kHz OSS*
MOCHA-TIMIT [168] | 4028 2 4:383h  2:28h v 16 kHz NCt

t free for noncommercial use
¥ https://opendatacommons.org/licenses/odbl/1.8/
* BSD-style free software

Table 12.2: Common acoustic noise databases for fundamental frequency estimation. If significant,
includes the number of references in comparison studies between 2015 and 2019.

Corpus ‘ Samples Audio  Samplerate ref License
QUT-NOISE [26] | 20 13:39 h 48 kHz CC-BY-SA
NOISEX [155] 15 0:16 h 20 kHz 10 N/AT

T The database is no longer available online. However, it is based on the RSG.10
database, which is available at http://www.steeneken.nl/7-noise-data-base/.

laryngograph-derived fundamental frequency ground truth included in some speech corpora, or a
reference PDA that was used in training. Table 12.3 lists the PDAs used in this study, as well as the
databases used for training them.

The comparisons in this chapter were carried out on the replication dataset detailed in Chapter 11,
which also includes a full description of the performance measures used for comparison. While this
chapter shows mostly comparisons between PDAs, the appendix on page 185 includes PDA profiles
that summarizes each PDA on its own, which can be used as a quick reference while reading this
chapter.

The rest of this chapter is organized as follows: Section 12.2 analyzes the data from the replication
dataset and compares the PDAs’ performance measures and resulting characteristics. This includes
a large number of subsections for various performance metrics and statistical analyses. Finally, Sec-
tion 12.3 concludes the paper with a general summary of the findings.

12.2 Evaluation

The replication dataset contains enough variety to assess the qualities and behaviors of the various
PDAs in many kinds of different signal conditions. The following sections will look at different aspects
of this by grouping the replication dataset by various parameters and averaging their performance
measures within each group to show how PDA performance is affected by the parameter.

Additionally, some evaluations require new performance metrics that are not part of the replica-
tion dataset’s performance measures. These were calculated on the raw estimations included in the
replication dataset, and again grouped and averaged for presentation.

We generally attempted to keep the positions and colors of the PDA constant across graphs as
much as possible. For the same reason, the 25 PDAs in the replication dataset were pared down
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Table 12.3: PDAs used for comparison, and the corpora used by the original authors in training or
evaluation.

PDA training corpora

AMDEF [130]

AUTOC [140]

BANA [56] NOISEX

CEP [105]

CREPE [79]

DIO [100] FDA

DNN [50] NOISEX, TIMIT
KALDI [42] KEELE

MBSC [151] FDA, KEELE, NOISEX
MAPS (chapter 8) PTDB-TUG, QUT-NOISE
NLS [104]

PEFAC [45] NOISEX, TIMIT
PRAAT 9]

RAPT [150]

SAFE [22] FDA, KEELE, NOISEX
SACC [86] FDA, KEELFE

SHR [149] FDA, KEELE

SIFT [93]

SRH [31] FDA, KEELE, NOISEX
STRAIGHT [73]

SWIPE [18] KEFELE, FDA

YAAPT [173] KEELE, FDA

YIN [24] KEELE, FDA

to merely 20 PDAs, so as to ensure a reasonable graph size of a 4-by-5 grid. The removed PDAs
were CEP, AUTOC, and AMDF, which were found to perform very poorly in noise, and therefore
expendable in the comparison. Of the two versions of NLS, the later iteration was found to be a large
improvement and included instead of the earlier one. Of the pair of DNN/RNN, DNN was excluded
in favor of RNN, as they were found to be all but identical. These PDAs are included in the PDA
profiles in the appendix, however.

All PDAs were used with their default parameter values. There is no doubt that many of them
could be adjusted to better fit particular situations through their parameters, but this would exceed
the scope of even this large comparison study. For the same reason, our own algorithm, MAPS, is
included with the pitch confidence decision matrix from Chapter 8.2.3 instead of a newly trained
matrix for the greater variety of speech amd noise signals used in this comparison.

As each PDA was developed for a specific use case, and a specific signal model, their behavior varies
greatly under different signal conditions. Many of these differences only became visible in a large and
diverse data set such as the replication dataset. In total, this evaluation is a summary of about one
million experiments, consuming a total calculation time of roughly a full year on a single-core computer
from 2019. To the best of our knowledge, this is the largest and most complete comparison study of
PDASs and corpora yet conducted.
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Figure 12.1: GPE vs. SNR of all PDAs from the entire realistic data set for the consensus truth with
mean GPE as a solid line, MAD as shaded area, and synthetic baseline as dashed line. Only for frames
that are voiced according to the ground truth and the PDA.

Estimation Accuracy (GPE)

Figure 12.1 shows the most common measure for fundamental frequency estimation accuracy: the
gross pitch error for various SNRs. In general, PDAs are most accurate if the speech signal is not
corrupted by noise and SNRs are high. Towards lower SNRs, more and more regions of the speech
signal are corrupted and estimation accuracy suffers.

Most PDAs show a characteristic “knee” somewhere around 0 dB SNR, where noise corruption be-
comes significant, and estimation accuracy begins to deteriorate. At higher SNRs than this transition
area, error rates are typically constant and near zero. On the lower-SNR side, error rates rise. In the
following text, frequent reference will be made to this transition area, as many differences between
PDAs are most obvious in this area. “Positive SNRs” and “negative SNRs” will frequently be used as
a shorthand for areas before or after this transition area.

From GPE curves, we can derive further performance criteria, such as minimum error rates at
positive SNRs and the steepness and threshold of the error slope in the transition area. A minimum
error rate close to zero at positive SNRs implies an unbiased estimator. A noise robust estimator can
retain its peak performance up to low SNRs, and has a late and shallow transition slope. Depending on
the application, error rates below 10-30 % are usually deemed usable. Based on these considerations,
CREPE, KALDI, MAPS, MBSC, PRAAT, SACC, SAFE, SRH, SWIPE, and YIN are unbiased at
positive SNRs, and CREPE, MAPS, MBSC, PEFAC, RNN, SACC, SRH, and SWIPE are particularly
noise-robust.

However, the gross pitch error is a joint evaluation of the PDAs’ voice activity determination and
estimation accuracy, as only voiced frames are taken into account in its calculation. For the purposes



144 CHAPTER 12. A COMPARISON OF METHODS

of GPEs, a frame is considered wvoiced if both the ground truth and the PDA label it thus. Therefore,
low error rates mean both precise pitch estimates, as well as accurately discarding unusable frames,
particularly at negative SNRs, where many frames are irretrievably masked by noise. The trade-off
between recalling enough voiced frames and selecting precisely only voiced frames will be evaluated in
more detail later.

Beyond the mean GPE, the shaded areas in Figure 12.1 around the mean visualize the mean
absolute deviation (MAD)! of GPE per trial across the entire data set at the given SNR and illustrates
the variability of the estimates across signal conditions. High MAD indicate that the estimation
accuracy depends strongly on the kind of signal and noise. For many applications, a low MAD at
positive SNRs is highly desirable, as found in CREPE, KALDI, MAPS, MBSC, SACC, SAFE, SRH,
SWIPE, and YIN. This will be investigated further later with explicit differences between corpora and
noise signals.

The dashed line in Figure 12.1 shows the mean GPE for the synthetic experiment, with modulated
harmonic tone complexes in white noise. Most PDAs use them as their internal signal model, and
produce very high accuracies for these kinds of signals. Since white noise masks every frequency equally,
the drop-off from total accuracy to no estimation is usually very steep, at the precise point where the
noise overwhelms the signal in the PDA’s feature set and usually does not correspond exactly to the
transition area in the realistic data set. If the synthetic accuracy is worse than the realistic accuracy,
the algorithm likely does not use harmonic tone complexes as its signal model. This is certainly true
for MBSC and SACC, which both employ autocorrelation on band-pass filters that might expect more
temporal structure than is provided by sinusoids. SWIPE also shows this behavior, however, perhaps
due to its stronger-than-usual subharmonic suppression.

In this first evaluation, algorithms with near-zero error rates at positive SNRs, and transitions
around 0 dB SNR can be considered highly accurate, such as CREPE, KALDI, MAPS, MBSC, PEFAC,
RNN, SACC, SAFE, SRH, and SWIPE. It should be noted however, that these criteria only apply to
applications with high levels of noise. For example, PRAAT and RAPT and YIN might be perfectly
adequate if little noise is expected.

Estimation Precision (FPE)

While the gross pitch error in the previous section describes the accuracy of a PDA, a measure for how
close its estimates are to the truth, this section’s fine pitch error is a measure for a PDA’s precision,
or random variability. Figure 12.2 shows the FPE of all PDAs against SNR.

The fine pitch error offers a measure of how out-of-tune the average grossly correct estimates of
a PDA are in a musical sense. However, prosodic variations in pitch are rather coarse, and there is
no specific meaning ascribed to the precise pitch of speech in European languages. The FPE should
therefore be interpreted with some reservations, as its significance is limited, at least to Western
languages. Nevertheless, its importance to other applications such as musical tune, as well as the
analysis of some tonal languages, is without question.

For this reason, most PDAs estimate pitch on a rather coarse scale, both in time and frequency?.
Some PDAs improve precision with a parabolic interpolation stage of frequencies after the main
estimator. No such sharpening measures are typically employed in the time domain, however, beyond
the implicit time interpolation of center-weighted window functions. Accordingly, neither PDAs nor
the ground truths in our speech corpora can be assumed to be optimized for minimizing fine pitch
errors.

!the mean absolute deviation around the mean, or % 25:1 |z,, — | is similar to the standard deviation, but easier to
interpret in terms of the data coordinates, as it does not include squaring. The MAD is a measure of dispersion around
the mean, thus GPE+MAD may exceed 100 %.

2at least by default. Some PDAs include the resolution of their frequency grid as an adjustable parameter.
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Figure 12.2: FPE vs. SNR of all PDAs from the entire realistic data set for the consensus truth with
mean FPE as a solid line, MAD as shaded area, and synthetic baseline as dashed line. Only for frames
that are voiced according to the ground truth and the PDA.

It is no surprise then that Figure 12.2 shows significant differences between PDAs. In general, FPEs
follow a similar shape as GPEs, and rise from a stable minimum at positive SNRs to a maximum at
negative SNRs. However, neither is a near-zero GPE any indication for a near-zero FPE, nor are
the transition areas necessarily similar. As FPEs are the mean absolute deviation of grossly-correct
frames, pitch estimates are guaranteed to lie between 4+ 20 % of the true pitch, and entirely-random
estimates would therefore result in 10 % FPE.

In contrast to GPEs, where most PDAs clearly trend towards zero, FPEs typically reach a minimum
well above zero, with CREPE, KALDI, MBSC, PEFAC, SHR, SRH, and SWIPE below 2 %; DIO,
MAPS, NLS, PRAAT, RAPT, RNN, SACC, SAFE, SIFT, STRAIGHT, and YIN around 2 %; and
BANA and YAAPT between 2-10 %. The one PDA optimized specifically for singing voices, CREPE,
achieves one of the lowest FPE, which is no doubt desirable in that particular application®.

Synthetic results similarly trend to a stable minimum above zero. For many PDAs, this minimum
is somewhat lower than the minimum for realistic speech recordings, and transitions at lower SNR.
Three PDAs in particular show the opposite however: MAPS, PRAAT, and SACC. This might be
caused by the unrealistically broad fundamental frequency distribution in the synthetic dataset, which
are uniformly distributed between 80-240 Hz (plus modulation), whereas human speech pitches cluster
around 120 Hz and 180 Hz, according to Figure 10.2.

For most PDAs, the transition area of FPEs starts at lower SNRs than for GPEs. This is of
particular interest, as the first effects of rising noise seem to be occasional gross errors, but the
precision of the remaining estimates is unaffected at first. Perhaps this is an indication that these

3DIO also references singing voices, but its FPE minimum is not within the 4+ 20 dB SNR plotted here, and therefore
couldn’t be judged.
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Figure 12.3: Octave pitch errors vs. SNR from all PDAs on the entire realistic data set for the
consensus truth. The shaded area are mean GPEs, as in Figure 12.1. The dark areas mark GPEs that
are low octave errors, and the middle areas mark GPEs that are high octave errors. Only for frames
that are voiced according to the ground truth and the PDA.

PDAs’ VADs are more heavily influenced by noise than their pitch estimator, which results in un-
estimable VAD false positives, while true positives remain clearly discernible. This effect is strongest
for KALDI, NLS, PRAAT, RAPT, SHR, and YIN. Only BANA and YAAPT do not seem to follow
this trend at all.

In summary, it must once again be stressed that the importance of fine pitch errors is entirely
defined by the intended application. Speech synthesis and transmission might afford significantly
larger leeway in FPEs than musical analyses or automatic speech recognition of tonal languages.
Within the crop of PDAs in this study, however, the bias is probably towards the former, with very
little significance put on pitch estimation precision beyond its usefulness to prosodic characterization
of European languages.

Octave Pitch Errors

Since voiced speech produces a repetitive structure in both the time and frequency domain, PDAs are
susceptible to octave errors, where an integer multiple of the repetition period is mistaken for the true
period. Figure 12.3 shows GPEs that are octave errors, as part of the GPEs shown in Figure 12.1.
Octave errors are particularly frequent in the transitory region where GPEs just start to rise. In
this region, speech features are still detectable, but may be partly obscured by noise. Since many
noises are low-pass noises, they mask the fundamental frequency more strongly than its harmonics,
making octave errors more likely. In many cases, most or all GPEs in the transitory region are octave
errors. Particularly, KALDI, NLS, PRAAT, RAPT, SAFE, and SHR GPEs are dominated by low
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octave errors up to 0 dB SNR, and only start to diverge at negative SNR, whereas BANA, CREPE,
DIO, MAPS, MBSC, PEFAC, RNN, SACC, SIFT, SRH, and SWIPFE only show a minor contribution
of octave errors to total GPE.

Most octave errors were low octave errors. Comparing the dark shaded area with the medium
shade shows high octave errors to be an exceedingly rare occurrence. Only few algorithms, such as
BANA, CREPE, DNN, and SIFT showed high octave errors at positive SNRs at all. For all other
PDAs, high octave errors were insignificant, and only occured at negative SNRs where they were
probably a random occurrence. The exception was SACC, which indeed had more high octave errors
than low ones, perhaps owing to its bandpass filters being unaffected by out-of-band noise corruption
and no octave error suppression system in the machine learning stage.

At negative SNRs, speech features are masked entirely, and most pitch determination becomes
impossible. Thus octave errors, too, became less frequent below the transitory region. At this point,
most GPEs are likely pitch estimates of speech-like structures in the background noise or of non-
voiced speech segments. The latter can be caused from VADs that classify segments as voiced where
no fundamental frequency can be determined. This is particularly probable for PDAs where different
measures were used for VAD and pitch determination. PDAs with a joint VAD and pitch estimation,
such as SACC, MAPS, and RNN, likely derive some of their low GPEs in negative SNRs from not
making these kinds of errors.

It is often in the error cases where an algorithm reveals its internal biases, which are otherwise
hidden between accurate estimates. GPEs that are not octave errors are shown in Figure 12.4. The
figure shows all PDAs’ errors centered around the true pitch. While the remaining GPEs of BANA,
CREPE, MAPS, and RNN were roughly symmetrical around the true pitch, other PDAs, particularly
DIO, KALDI, NLS, PRAAT, RAPT, SHR, and YIN, showed a bias towards higher or lower frequencies.
Such a bias can be caused by a general preference for under- or overestimating pitches, or in some
cases by a default pitch that is assumed if no viable estimate can be determined.

Interestingly, some PDAs showed essentially a constant bias over all SNRs, while others varied with
SNR, indicating that biases change with noise levels. For example, PEFAC, RAPT, and SAFFE, tended
to under-estimate low-SNR pitches, but over-estimate cleaner signals, in gross estimation errors. This
might indicate that lower SNRs give rise to new kinds of errors that were not visible at higher SNRs,
perhaps noisy-but-voiced frames, whereas higher SNRs were dominated by purely voiced VAD false
positives.

VAD Errors

Many PDAs feature their own VAD that labels frames voiced if there is significant voicing activity, or
unvoiced otherwise. It should be noted that VAD in the context of fundamental frequency estimation
refers specifically to voiced speech, whereas other areas of research occasionally use the same term for
any kind of speech activity.

Each VAD must balance false positives and false negatives, or recall and precision. Depending
on the intended application, precision, recall, or a balance thereof might be preferable. For example,
a speech analysis application might require precise estimates as a basis for formant estimation or
speaker identification, which are rarely wrong, but exclude ambiguous cases. These applications can
often tolerate missing data but not incorrect estimates. In contrast, speech recognition might require
good recall to capture every syllable fully and might discard incorrect estimates on its own. Figure 12.5
shows the PDAs’ false positive and false negative rates across SNRs. Note that these kinds of errors
were invisible in the GPE graphs, as GPEs only look at true positives.

The graph shows that for most PDAs, SNR mostly affected false negative rates, while false positives
remained relatively constant. This should be expected, as rising noise levels necessarily cast more and
more frames as noisy, while fewer frames remain intelligible for pitch determination.
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Figure 12.4: Density histogram of remaining estimation bias of GPE errors vs. SNR of all PDAs from
the entire realistic data set for the consensus truth. Remaining bias is the frequency factor between
the estimated pitch and the true pitch for gross pitch errors that are not octave errors. Only for frames
that are voiced according to the ground truth and the PDA.

Interestingly, false negative rates do not seem to be influenced by the transition area, but instead
rose steadily with SNR, without a central pivot point around 0 dB. VAD performance thus showed
a reduction in recall, even in the area of constant, near-zero GPEs. This implies that most PDASs’
VADs are less robust to noise than their pitch estimators, and that real-word estimation performance
degrades with SNR even if GPEs do not.

In general, the PDAS’ curves are mostly parallel, and show little overlap, in Figure 12.5. This
suggests that the VADs differ mainly in their threshold, and not in their quality, particularly at low
SNRs. The choice of threshold is then a design decision depending on the intended application, with
PEFAC and STRAIGHT being particularly high-recall, and KALDI, MBSC, and SWIPEFE very precise.

It might seem strange that the results for MAPS are very different from Figure 8.11 in Chapter 8.
Indeed, MAPS’ training on PTDB-TUG made its VAD particularly precise on that dataset. No similar
tendency could be found in any other PDA, however, perhaps highlighting the unique nature of MAPS’
joint VAD and pitch estimator.

If the application is able to deal with missing data, but not incorrect estimates, low false positive
rates and high precision are required. If it is more important to catch all pitched data while tolerating
some incorrect estimates, a low false negative rate and high recall are required. It is amusing to note
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that both of these approaches might be called robust in some circumstances, while meaning their exact
opposite.

Error Summary

Thus far, PDAs were shown to produce gross pitch errors, VAD false positives, and VAD false negatives.
Gross pitch errors are important as they indicate incorrect estimates. VAD false positives are ignored
in GPEs, as there is no ground truth against which their estimates could be evaluated. In a practical
application, however, they are essentially indistinguishable from GPEs, in that they are incorrect
estimates. VAD false negatives are missing estimates, but at least they are not wrong. Missing data is
generally easier to deal with than incorrect estimates, if enough estimates remain to gain an impression
of the signal’s fundamental frequency.

Figure 12.6 summarizes all of these error measures as an overview of the findings so far. At positive
SNRs, a trade-off between false positives and false negatives is visible. Some PDAs, such as KALDI,
MAPS, MBSC, and SWIPE, show negligible false positive rates and very low GPEs but relatively high
false negative rates. Others trade lower false negatives for higher false positives and slightly higher
GPEs, for example CREPE, DIO, PEFAC, PRAAT, RAPT, RNN, SACC, SRH, and STRAIGHT. As
previously discussed, this trade-off depends on the intended application. It is unfortunate, however,
that the all-important GPE measure is affected by false positives, but not false negatives, creating an
incentive to reduce the former, and ignore the latter.

At negative SNRs, if false negatives rise too high, there might not be any frames left for evaluation,
as shown by the zeroes in the graph. Naturally, this is particularly prevalent in PDAs with high false
negatives, such as DIO, KALDI, MAPS, MBSC, PRAAT, RAPT, SACC, and SWIPE. Extreme exam-
ples of this were KALDI, SACC, and particularly SWIPE, where most recordings at negative SNRs
yielded no estimates whatsoever. These cases are hard to evaluate and are probably frequently over-
looked as they are not evident in GPEs or FPEs, the two most common error measures in comparison
studies.

Taken together and applied to real-world applications, however, the estimation and detection errors
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Figure 12.6: Error measures and missing data against SNR. The solid lines are GPEs, normalized to
the number of voiced frames both in the estimator and the ground truth as done before. Zeros are the
percentage of signals without any estimates, normalized to all signals. Pluses are the percentage of
VAD false positive, relative to the number of negatives in the ground truth. Minuses are the percentage
of VAD false negatives, relative to the number of positives in the ground truth. If the PDA had no
VAD, no zeros, pluses, or minuses are drawn.

combine, and often leave very few accurate estimates at negative SNRs. Thus, even though GPEs
imply otherwise, very few of these PDAs are suitable for negative SNRs beyond their transition area,
and a better assessment of their accuracy might be the location of the transition area, as opposed to
the remaining accuracy in terms of GPE or VAD errors.

In this sense, PDAs can be grouped in four categories: BANA, NLS, SAFE, SIFT, YAAPT, and
YIN do not have a VAD but should work acceptably at high positive SNRs. DIO, PRAAT, RAPT,
STRAIGHT, and SWIPE should work reliably down to about 15 dB SNR; CREPE, MAPS, MBSC,
RNN, SACC, and SRH down to 0 dB SNR; and finally, MBSC and SACC possibly slightly below
0 dB. Below this threshold SNR, either GPEs or VAD errors rise extremely quickly and results should
be expected to become useless at rapid rates.

VAD Dependence

)

At first glance, it seems estimation accuracy in terms of GPEs should not be influenced by the PDAs
VADs, as neither VAD false positives nor VAD false negatives were counted in the GPE calculation.
However, highly precise VADs, which exclude numerous false negative frames from the GPE, could
potentially improve accuracy by excluding ambiguous or difficult frames, whereas high recall VADs
would include many false positives, thus lowering accuracy.

Figure 12.7 shows the PDAs’ GPEs for voiced frames being determined by both the ground truth
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Figure 12.7: GPE vs. SNR of all PDAs from the realistic data set for the consensus truth. Solid lines
consider voiced frames by both the ground truth and the PDAs’ VADs (“mixed” condition), while
dashed lines consider frames voiced only based on the ground truth (“true” condition). PDAs without
VAD have neither mixed condition nor solid lines. PDAs that zero out their unvoiced frames have no
true condition and no dashed lines.

and the PDAs’ VADs (the default), or only by the ground truth. As expected, PDAs with a precise
VAD according to Figure 12.5, such as MAPS, SRH, and SWIPE, tend to be more accurate using
their own VAD than the ground truth. The effect is less strong for less precise PDAs. The opposite
is true for SHR, where the ground truth VAD actually improves GPEs.

Thus, including a VAD improves GPEs for most PDAs by more rigorously selecting unambiguous
estimates, thereby increasing both precision and accuracy. However, some PDAs choose to bake their
VAD into the estimates and zero out all unvoiced pitches. This practice should be discouraged, as it
restricts the use cases for the algorithm unnecessarily by forcing the PDA’s VAD on every application,
regardless of its suitability to the task. This is particularly important as VADs can be more signal-
dependent than the often more rigorously defined pitch estimation procedures. Instead, it is preferable
to include a pitch estimate and a VAD estimate, and to leave the masking of unvoiced frames to the
user.

Significance

PDAs are generally built for a particular purpose, and have particular strengths and weaknesses. Yet,
they are employed and evaluated with the same error measures, as if they could be used interchangeably.
To test their similarity to one another, Figure 12.8 shows the mean calculated from multiple t-tests
of pairs of PDAs’ GPE scores. A dark color indicates that the GPE scores were not significantly
different for many SNR conditions (p > 0.05), which is an indicator that these PDAs could be used
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Figure 12.8: Significance of differences as the mean of multiple t-tests on the GPE scores of pairs of
algorithms per SNR, averaged over all SNRs. White denotes all SNR conditions significantly different,
black means no significantly different SNR conditions.

interchangeably according to the GPE.

The figure shows several groups of PDAs which are essentially indistinguishable from one another.
In these cases, the numerical performance differences that remain between these PDAs should be
disregarded as measurement noise. At positive SNRs, the differences are generally more significant
than at lower SNRs.

At low SNRs, the GPE scores of some PDAs varied greatly with different signal and noise condi-
tions, to the point where a simple mean GPE becomes meaningless. This is visible as a large number
of interchangeable PDAs at negative SNRs, for e.g. SAFFE, NLS, and SIFT.

At high SNRs, differences became more significant, with fewer interchangeable pairs of PDAs.
Comparing significantly similar pairs to Figure 12.1, two distinct patterns emerge: Some algorithm
pairs, such as STRAIGHT and DIO, or RAPT and SHR, attained similar GPE scores, but with a wide
standard error. It is likely that the standard error contributes most strongly to their GPE averages
being indistinguishable.

In the opposite case of MBSC and SWIPFE, or SACC and MAPS, the GPE standard error dropped
to zero quickly, but so did the GPE itself. These four PDAs achieve such small error rates at positive
SNRs that their results become indistinguishable from GPE scores alone. At even higher SNRs
(not shown), these cases of perfect estimation become more frequent, and therefore meaningless for
comparison.

Interestingly, none of these highly similar pairings reflected much similarity in implementation. It
thus seems that there is no clearly preferable way of doing fundamental frequency estimation in a
particular domain or using a particular technique. Instead, even wildly different approaches seem to
lead to indistinguishable results. Merely a weak assertion might be that they are all multi-domain
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algorithms that make their estimates from both time- and frequency information.

This similarity between high-performance PDAs highlights how fundamental frequency estimation
at positive SNRs is a well-studied discipline with plenty of close-to-perfect solutions available. New
developments, therefore, should be careful to qualify their algorithms’ performance for specific appli-
cations, such as high levels of noise, pathological voices, or specific kinds of noises. Merely striving
for ever fewer errors at positive SNRs of calm speech in acoustic noise seems unlikely to result in
significant improvements any longer.

Speech Corpus Dependence

Every PDA has its own signal model, and was developed with reference to a set of target signals. This
includes explicit machine learning processes with training data sets, or it might be implicit, such as
an example recording frequently used during development. Either way, a PDA should be assumed to
work best for signals that resemble its developmental references.

Figure 12.9 shows the difference in GPE for each PDA and various speech corpora. The graph
shows negative numbers for lower/better GPEs and positive numbers for higher/worse GPEs. Some
PDAs show a marked preference for one corpus or another. Particularly if these preferences extend
into positive SNRs, it is reasonable to assume that these PDAs were trained on the preferred corpus.
Table 12.3 on page 142 listed all known training corpora used for various PDAs. In the following
descriptions, PDAs known to be trained on the described corpus are highlighted with a *.

The strongest divisor, the TIMIT corpus, resulted in significantly worse GPEs for BANA, CREPE,
DIO, SRH, STRAIGHT, and YIN, and better GPEs for MBSC, NLS, SAFE, SHR, and YAAPT,
whereas MOCHA-TIMIT generally had the opposite effect. CMU-ARCTIC improved DIO*, NLS,
SAFE*, STRAIGHT, and YAAPT, while FDA* revealed the opposite. PTDB-TUG* had a positive
effect on MAPS* and SHR, and a negative one on PEFAC and YAAPT. KEELE-Mod* was positive
for STRAIGHT, SHR*, and YAAPT*. In general, these latter two corpora, PTDB-TUG and KEELE-
Mod, were the most balanced from those investigated here.

Differences in Figure 12.9 are often particularly apparent in the transition area. This area is
especially susceptible to ambiguities, as feature data become noisy and estimators more likely overlook
fine details. Thus, the subtle differences between corpora are bound to become most visible in this
area. At negative SNRs, details are obscured by noise anyway, and performance differences between
corpora generally disappear.

In the transition area, the difference between corpora can be highly significant for some PDAs.
From the graph, KALDI, RAPT, RNN, SACC, and SIFT can be said to be mostly invariant to the
differences between the speech corpora. In some cases, the differences only affect a single corpus, such
as MAPS and PEFAC for PTDB-TUG, or SRH and YIN for TIMIT. In other cases, every corpus is
different, particularly for CREPE, DIO, SAFE, SHR, STRAIGHT, SWIPE and YAAPT. As the most
extreme example, CREPE, DIO, and STRAIGHT lost more than 20% GPE in their transition area
and the TIMIT corpus.

It is tempting to assume that such signal specificity should be most prevalent in neural-network-
based approaches. However, the data showed no particular difference between algorithms with deep
neural networks, such as CREPE, DNN, SACC, or learned decision matrices in MAPS and PEFAC,
or even the more conventional hard-coded decision trees in the other PDAs. Conversely, manual
parameter optimization seems to impart a similar amount of bias to a PDA as learning parameters
from data.

These differences are no doubt caused in part by different base difficulties of the corpora them-
selves. To illustrate, the upper graph in Figure 12.10 shows a summary of each corpus’ estimation
difficulty. While some corpora, such as CMU-ARCTIC, seem somewhat less difficult than others, such
as MOCHA-TIMIT or FDA, these differences are minor and do not explain the deviations seen in
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Figure 12.9.

Yet, what causes these differences? The bottom graph in Figure 12.10 shows the distribution of
fundamental frequencies in each corpus. Most corpora have a balanced distribution of high (female)
voices and low (male) voices. FDA differs from this with a peculiarly high female voice, but this does
not seem to cause any difference in error measures. TIMIT, however, seems harder to estimate at
lower SNRs than the other corpora, which could be explained by it having many more recordings of
male voices than female, which are more easily masked by low-frequency noises. MOCHA-TIMIT is
the opposite, and indeed did lead to the opposite behavior for some PDAs.

To summarize, there are significant differences in estimation accuracy between various corpora,
and in the robustness of PDAs to differences between corpora. The different fundamental frequency
distributions of the corpora undoubtedly played a role in this, as did their general clarity of pronun-
ciation. The influence of fundamental frequency on PDA accuracy will be revisited in a later section.
As a good general guideline, the KEELE-Mod and PTDB-TUG corpora seem to lead to relatively
little accuracy variance, and KALDI, RAPT, RNN, SACC, and SIFT are most robust against speech
signal variety.



12.2. EVALUATION 155

—~— CMU Arctic «— KEELE-Mod o— PTDB-TUG
FDA —+— MOCHA-TIMIT  —— TIMIT
5_

A GPE in %
o

1
S]]
1

0.02 1

0.01 ~

PDF estimate

0.00 -

100 150 200 250 300
fundamental frequency in Hz

Figure 12.10: General overview of speech corpora. Upper graph is the mean GPE delta between the
corpus and the mean of all corpora; the lower graph is a Gaussian kernel density estimate of the
fundamental frequency distribution of each corpus.

Noise Corpus Dependence

Similar to the previous section on speech corpora, each PDA was explicitly or implicitly trained for a
particular set of noises. Figure 12.11 illustrates the difference in GPE scores for each PDA and the
two noise corpora NOISEX and QUT-NOISE.

For most PDAs, NOISEX seems to lead to more accurate estimates. Notably, NOISEX includes
only very steady noises, such as constant engine noise or babble noise, whereas QUT-NOISE’s noise
recordings are more natural in that they include noises with more level variations, such as recordings
of traffic at an intersection or of a cafeteria. While these variations were equalized somewhat due to
the SNR calculation being specific to short segments of speech and noise, algorithms unaccustomed
to varying noise levels might still perform worse for QUT-NOISE. On the other hand, a more variant
noise would also provide more possibilities for listening in momentarily quiet parts than steady noises
without such gaps.

The only algorithm that actually performs better in QUT-NOISE than NOISEX is MAPS, which
was in fact trained on QUT-NOISE.

Similar to the different speech corpora, accuracy differences often showed a maximum in the PDAs
transition areas. This time, CREPE, MAPS, PEFAC, RNN, SACC, and SIFT were mostly invariant
to the differences between the noise corpora, while DIO, KALDI, PRAAT, SAFE, STRAIGHT, and
SWIPE reflected a particularly strong influence.

)

In combination with the speech corpora dependence in the previous section, RNN, SACC, and SIFT
were outstandingly robust against signal changes. This might make these PDAs of particular interest
for applications with strongly varying or unpredictable signal and noise conditions. It additionally
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Figure 12.11: GPE difference between individual noise corpora and the overall mean. O is NOISEX,
and O is QUT-NOISE.

makes these PDAs ideal for comparison studies between PDAs, as they are least likely to skew results
due to evaluation signal variability. Interestingly, two of these, RNN and SACC, employ neural
networks in their algorithms, vindicating their stigma of being prone to over-fitting.

It is hard to overstate the significance of these results. In many cases, the difference between
a well-matched speech recording and background noise for a PDA might yield a GPE difference of
easily more than 20 %, or a noise robustness difference of ten or more dB SNR. In fact, these signal
dependencies indicate that most comparison studies between PDAs should be reported as suitability
for particular signals and noises, as opposed to “comparable” accuracy rankings.

Noise Type Dependence

In addition to noise corpora, each PDA may respond differently to the various types of noises contained
therein. In general, the fundamental frequency of speech should be easier to detect in near-white,
constant-spectrum noises such as car noise or traffic noise, and harder to detect in varying, tonal, or
speech-like noises such as babble noise or cafeteria noise.

Figure 12.12 shows how the PDA accuracy changes with various noise types. The graphs show that
some PDAs are more influenced by differences between noises than others. Some PDAs can reach very
small GPEs across all SNRs for best-case noises, even rivalling the synthetic results from Figure 12.1.
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Figure 12.12: GPE vs. SNR of all PDAs from the entire realistic data set for the consensus truth.
GPE mean are solid lines, mean absolute errors of the GPEs of different noise types are shaded areas,
and best/worst noise GPE are dashed lines. Only for frames that are voiced according to the ground
truth and the PDA. x mark babble/cafeteria noises, + machine gun noise, and circles mark white
noise.

The opposite is true as well, with some PDAs being exceptionally strongly influenced by worst-case
noises.

Additionally, the graph marks out three special kinds of noises: babble/cafeteria noise, which is
very variable and has a similar long-time spectrum as speech, white noise, and machine gun noise,
which alternates between very loud low-pass shots, and silence. Babble/cafeteria noise is generally one
of the more difficult noises, particularly for BANA, MAPS, MBSC, PEFAC, RNN, SACC, and SRH.
Interestingly, this includes most of the data-driven PDAs, whose decision matrices seem to be easily
fooled by speech-like disturbances. One must imagine that this is particularly true for their VADs,
which probably produce more false positives than usual in this case.

In contrast, white noise is generally one of the easiest noises to deal with, as it is spectrally and
temporally unchanging and easy to discern from speech. The only PDAs that do not follow this
pattern are CREPE at negative SNRs, and SHR and SIFT. In these particular cases, however, it
is the machine gun noise that has even lower GPEs, likely due to its frequent quiet gaps between
shots. This might imply very quick signal adaptation, which allows for good listening in gaps, but
easy disturbance if there are none. Conversely, PDAs such as YAAPT and RAPT are particularly
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strongly disturbed by machine gun noise, however, probably because of large smoothing constants
that fill in the vital gaps.

Thus, depending on the application and kinds of noises expected, it might be preferable to select
a PDA with low variability in response to noises, or one especially accurate for one particular kind
of noise that is expected to occur in the intended application. It might also be preferable to select
a PDA suitable for dealing with steady noises, or one that is better adapted to variable noises with
gaps.

The difference in accuracy between a well-adapted PDA to a particular kind of noise and one un-
suited can be extremely large. Taken together with the previous section on speech corpus dependence,
these differences outweigh most other evaluations in this chapter.

Ground Truth Dependence

Some speech corpora provide their own fundamental frequency ground truth, some do not. To com-
pensate for this, the consensus ground truth was calculated for all speech corpora used in this study.
The choice of ground truth can potentially have a great impact on estimation accuracy, by excluding
ambiguous or difficult frames, or simply deciding ambiguous cases similarly as a PDA.

An assumption about the origin of pitch is implicit in each ground truth: In case of a laryngograph-
derived ground truth the argument follows a production model, where pitch is caused by vibrating
vocal cords. The consensus truth, in contrast, interprets pitch from a perception point of view, where
pitch is a property of an audio recording.

Figure 12.13 shows GPE scores for all PDAs for the corpus ground truth, the consensus truth,
and additionally for the PDAS’ own estimates of clean speech signals as ground truth. At truly clean
SNRs (not shown), the GPE against the PDAs’ own estimates always reaches zero.

The graph generally shows minimal differences between the consensus truth and the corpus’ truth.
This is as expected, as the fundamental frequency estimates should not differ much between these two
methods. However, where there are differences, the corpus ground truth generally shows slightly more
gross pitch errors. This is another indication that the corpus ground truths include some estimation
errors of their own, which were erroneously attributed to the PDAs, as discussed earlier in Chapter 10.

This indicates that laryngographs are indeed a somewhat poor source of ground truth, as hypothe-
sized in Chapter 10, at least for the purposes of evaluating PDAs. It remains an unanswered question,
and a philosophical one at that, whether speech production or speech perception should serve as the
source of truth for pitch estimation. But at least the data shows that PDAs generally estimated a
perceptive pitch.

In addition, the graph shows GPEs with respect to the PDAs’ own estimates of the clean speech
recordings. While the GPEs of this “ground truth” did reach zero GPE at very high SNRs, the
differences to the other two truths were surprisingly small. The only exceptions were NLS and BANA,
which in the case of NLS, was probably due to its strong tendency towards lower octave errors. BANAs
estimates, in contrast, seemingly diverged for clean and noisy recordings, with the noisy ones being
more accurate. This might be a case of training or over-fitting to noisy speech, and a corresponding
low suitability for clean speech.

In general, however, the estimation accuracy differences between the various ground truths was
small. This is important as PDAs historically have been evaluated with a large variety of databases
and ground truths, and at least this part of the evaluation procedure thus indeed proved unproblematic.
In particular, it means that methods like the consensus truth can be used without issue to make new
speech datasets available to fundamental frequency estimation research, and correspondingly enlarge
the repertoire for future PDAs.



12.2. EVALUATION 159

L _I T T L L

2 100 1 ] . ] .

p MBSC NLS PEFAC PRAAT RAPT
m 207 i _\~\=‘= _ _\\
(ol & S Ll
S 0 | | | |

GPE in %
(@)}
o
1
i - i
Z Z
sy | z |
1
wn
>
O
9
1
. '
. e
o [es]
1
.: wn
/1:
o=
1
12
Il T
AR

O - . - . -
T T T T T T T T T T T T
X 100 4 . . . .
o ) SWIPE YIN
'LE 50 N 4+ STRAIGHT - = . -
o k... YAAPT s L
QO 0 . . . .

-5 0 15 -15 0 15 -15 0 15 -15 0 15 -15 0 15
SNR in dB SNR in dB SNR in dB SNR in dB SNR in dB

Figure 12.13: Comparison of various fundamental frequency ground truths. Solid lines are the consen-
sus truth used for all previous graphs, dashed lines the speech corpus truth (only available for FDA,
KFEFELE-Mod, and PTDB-TUG), and dotted lines use using each PDA’s own estimates of the clean
signal as ground truth.

Fundamental Frequency Dependence

Fundamental frequency estimation should perform well for the entire pitch range of human speech.
However, depending on the training dataset and intended application, PDAs might acquire unintended
biases. Figure 12.14 shows the estimation accuracy of each PDA for pitch ranges corresponding to
male voices, intermediate voices, and female voices.

Perhaps surprisingly, every PDA was biased towards either male or female voices. The magnitude
of these differences occasionally proved to be very large, up to 50 % GPE in some cases. Like in
earlier evaluations, these differences usually only manifested within the transition area. Additionally
however, they tended to widen towards negative SNRs, indicating that some PDAs are indeed capable
of limited fundamental frequency estimation even at strongly negative SNRs for some voices.

Depending on the PDA, either male or female voices yield better accuracies. Interestingly, PDAs
favoring higher pitches often seemed to be based on a time-domain signal representation, such as
CREPE, SACC, and SIFT, whereas the majority of low-frequency optimized PDAs operate in the
frequency domain. This could be attributed to the fact that higher-frequency waveforms offer more
repetitions per block, while lower-frequency spectra show a greater number of harmonics.

For example, DIO, KALDI, NLS, PRAAT, SAFE, and SHR worked much better for low-frequency
voices, while the aforementioned CREPE, SACC, and SIFT showed a slight preference for high-
frequency voices. BANA, CREPE, MAPS, MBSC, PEFAC, RNN, SACC, SIFT, SRH, and YIN
seemed relatively invariant to voice frequency, and a good choice for mixed-gender applications.

To investigate this in more detail, Figure 12.15 highlights how and when error rates changed
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Figure 12.14: GPEs over SNR for various speech pitch ranges, roughly corresponding to male and
female voices. Solid lines for pitches below 120 Hz, dashed lines between 120 Hz and 180 Hz, and
dotted lines for pitches above 180 Hz. Only for frames that are voiced according to the ground truth
and the PDA.

with pitch and SNR. Blue areas denote frequencies where the PDA performs worse than its mean
at the given SNR, while yellow areas show better performance. Evidently, the performance of most
PDAs differed most strongly at low SNRs, while the high SNR, low-GPE areas of most PDAs showed
similar accuracy across all speech pitches. At low SNRs, most PDAs clearly favored higher or lower
frequencies, as previously predicted. It should be noted, however, that the impression of a “tipping
point” near 150 Hz is merely an artifact of the color map in the visualization, and does not imply this
frequency as particularly divisive.

This graph shows that for some PDAs, these differences are strongly local to small frequency bands
or SNR regions, while others are more evenly distributed across the frequency and SNR range. For
example, RNN, SRH, CREPE, and SACC seemed to have low accuracy for very low pitches, but
showed no such tendency above ca. 100 Hz. It seems likely that PDAs with deficiencies of very high
or very low frequencies were designed for a more limited pitch range than the speech datasets used
in this evaluation. Conversely, a strong preference for one frequency might indicate very a narrow
training.

These preferences for high- or low-pitched voices might also explain a large part of the speech
corpus preference exhibited in some PDAs and discussed earlier. In particular, Figure 12.10 showed
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Figure 12.15: Fundamental frequency bias of PDAs. GPE change with respect to the mean GPE
of each PDA over SNR and mean speech fundamental frequency. Only for frames that are voiced
according to the ground truth and the PDA.

the TIMIT corpus to contain many more male voices than female, and the MOCHA-TIMIT corpus
to be slightly skewed the other way. As for to the present topic, this implies that the former should
be strongly preferable to DIO, KALDI, NLS, PRAAT, SAFE, and SHR. However, comparing this list
with Figure 12.9 shows no such preference in a significant way. Perhaps this is due to the corpus
differences being mostly prevalent in the transition area, while voice pitch biases are most strong at
negative SNRs, with only a small overlap between the two.

Nevertheless, the GPE differences across speech pitches are quite large, and might well obscure
more subtle differences between PDAs if not carefully controlled. As a preference for high or low
pitches is inherently a gender issue, it should be considered with particular care when choosing a PDA
for an application. BANA, MAPS, MBSC, RAPT, SIFT, and YIN are relatively unbiased for voice
frequencies.

12.3 Conclusions

Publications on fundamental frequency estimation algorithms commonly try to highlight the particular
strengths of one PDA over a set of “reference” PDAs. This necessity for superlative claims incentivizes
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hiding subtle issues. The present study used a very big data set to establish performance measures
and evaluation criteria useful for such a comparison. The analysis of that dataset showed that many
seemingly minor parameters such as choice of signal and noise corpora, voice pitch, and the choice of
training material can have a commanding influence on the evaluation results. Thus without a complete
and identical set of performance metrics and evaluation signals, the results of comparison studies are
almost incomparable.

In the face of such obstacles, any simple classification of PDAs into “machine learning vs classic
signal processing”, or “frequency domain vs time domain”, or even “simple vs complex”, have been
found largely useless, as the performance parameters of each PDA were invariably more complex than
any such simple categorization might suggest. As a result, this study must even end without a clear
recommendation of a “best” PDA, as no such thing could be found in the data. No PDA was found
outstandingly well-suited for all kinds of signal and noise, and no particularly worthwhile trade-off
between computation time and estimation performance could be discerned.

Any measure of “good enough” must thus truly be evaluated on a per-application basis, and
depends on a wide variety of factors, involving the kinds of speech recordings presented, the expected
noise levels and types, the computational capacity available, and the preferred trade-off between recall
and precision. Reasonable choices probably favor newer developments such as MAPS, CREPE, RNN,
or SACC, although all of these come with particular caveats, and many circumstances will favor
different PDAs. If noise is of little importance, older PDAs such as YIN, SIFT, or PRAAT, can also
work well, and require fewer computational resources.

While the effort was made to find explanations for the differences in estimation accuracy between
corpora, there is no reason to assume that our selection of speech and noise signals is in any way
complete. It must therefore be assumed that real-world recordings are even more varied than the
ones used in this study, and show even more aberrant behavior than the ones we have already seen.
A thorough investigation of a PDA’s intended application and suitability is therefore essential for
getting accurate estimates; and due to the infinite vagaries of the real world, far beyond the scope of
any controlled scientific comparison study.

In fact, this study has shown that the influence of these signal characteristics far outweighs any
differences between PDAs. This is particularly important for outlier voices such as childrens’ or
pathologic ones, but also simply non-English speakers. If even the small differences between our
speech corpora lead to large differences in accuracy, we have little hope for even more diverse voices.
It is our hope that procedures like the consensus truth might open these kinds of voices to the world
of pitch estimation, and increase diversity in our databases.

Interestingly, we found that many of the differences between PDAs are most prevalent in a tran-
sition area, where gross pitch errors slowly start to rise as SNRs deteriorate, but have not yet risen
to a point where the estimates are essentially useless for most applications. It is in this region where
frequency dependence, noise dependence, and octave errors are seen most strongly, and it is thus this
transition that holds the key for evaluating the estimation accuracy of a PDA. However, it has also
been found that this area is exceedingly small, and even a difference of a few decibels in signal-to-noise
ratio can change an algorithms’ behavior from mostly correct to almost useless.

However, these characteristics were often hidden from the error measures. In particular, most
error measures only look at truly voiced frames, and are thus blind to VAD errors. This leads to gross
pitch errors looking acceptable at negative SNRs, where in reality VAD false positives would introduce
many incorrect estimates, and false negatives would leave nary a correct frame to estimate from. In
fact, our results showed that negative SNRs rarely retained much useful data beyond their transition
area, despite published claims to the contrary.

Future studies should invest effort into creating new error measures that quantify a PDA’s behavior
in this transition area. The existing error measures, such as gross pitch errors and voicing decision
errors have been found to frequently confound independent variables, and to be easily misread. As
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a first step, the appendix to this document includes a summary report on each individual PDA; to
give a quick overview over its performance characteristics without any comparison. Additionally, the
software repository attached to this dissertation contains source code for calculating the same report
for new PDAs.

However, calculating such performance metrics for a large report such as this, is fraught with
additional difficulties, such as availability of computer time and the sheer amount of data needing to
be processed. It is the hope of the authors that by making the results of our calculations, and indeed
the estimated fundamental frequencies and the speech and noise corpora themselves available freely
as part of this dissertation?, future researchers will be able to provide a more nuanced picture of their
newly developed PDAs.

4see https://bastibe.github.io/Dissertation-Website/
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Chapter 13

What is the Pitch of Voiced Speech?

In Part I, this question was answered from a human perception point of view: Pitch is not a physical
property of a signal, but our perception of it. While a thoroughly unsatisfying answer in terms of
signal processing, it is ultimately the only truth there can be.

But if this is the answer, then all further inquiries in algorithmic pitch estimation are futile. If
only a human mind can perceive pitch, then pitch estimation algorithms are an error of category, as
algorithms may only estimate a numerical value, not what it “feels like” to hear a voice that is high
or low.

As such, our definition of pitch had to be altered into a realm measurable and amenable to
algorithmic analysis. In doing so we traversed onto the slippery slope between pitch on the one side,
and fundamental frequency on the other. There are technical measures for fundamental frequency that
can be derived from signal recordings, but are they pitches?

This is ultimately a philosophical question. An algorithm may estimate a physical property of
a sound, such as its rate of repetition or the lowest frequency of a tone complex. And this may
correspond to our perception of the sound being high or low. But whether these things are the same is
a question that a dissertation on signal processing cannot answer. And yet, it ¢s the ultimate question:
in order to evaluate the accuracy of pitch determination algorithms, they need to be compared to
a truth, and the choice of that truth must fall somewhere on the spectrum between perception and
measurement.

Chapter 2 then provided an overview of the human apparatus for speech production and perception,
with a particular emphasis on their relationship with pitch. Interestingly, these two perspectives
provide two different interpretations of pitch that would become of greater importance later in the
text: On the production side, voiced speech is a periodic signal produced from repeatedly opening
and closing the vocal folds and exciting the vocal tract into resonance. On the perception side, voiced
speech is a harmonic signal that excites the basilar membrane at regular intervals and with common
phases.

To bring pitch estimation into a more technical context, Chapter 3 replaced our definitions of the
problem with a simpler one: Pitch is what speech corpora say it is. Thus, the philosophical questions
are replaced by concrete questions that can be answered with signal processing. As a corollary, a
pitch determination algorithm is now deemed accurate if it produces results similar to those published
in existing corpora. Implicit with this simplification comes not considering the influence of room
acoustics, multi-channel recordings, multi-speaker recordings, abnormal modes of speaking, abnormal
voices, and non-English speakers, because existing corpora do not provide a basis to evaluate these
influences.

Part II changes perspective and views speech signals from a digital signal processing perspective.
Chapter 5 examined speech within the analytic framework of the short-time Fourier transform, which
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disentangles signals along time and frequency, not entirely unlike the filter-bank-like qualities of the
human cochlea. Quite different from the organ of hearing, however, the STFT allows a deep intro-
spection of signals frozen in time. Details of signals may be viewed without considering the passage
of time, or the progression of frequencies. It is both the power of the STFT to allow this analysis and
a great danger to ignore this context.

A particular interest was taken in the choice of window function for the STFT. Much like the shutter
speed of a camera, the length of that window compromises between artificially freezing changing signals
in time or integrating over their changes. Depending on the window length, the human voice appears
either as periodic glottis pulses or as harmonic tone complexes. Additionally, the choice of window
shape determines the “sharpening” of the spectra, trading off greater image contrast against lower
ringing, the former desirable for STFT magnitudes and the latter for its phases. For STFT phases
in particular, the chapter introduced the Hann-Poisson window, which has the unusual property of
having no zeros in its magnitude spectrum, and therefore imposes no phase reversals onto STFT
phases, making them significantly easier to interpret.

The chapter ended with an investigation into the graphical display of STFTs. The human visual
system is just as complex as its auditory system, and thus the same care must be taken to avoid its
idiosyncrasies and ambiguities as in audio signal processing. Part of this was dedicated to the design
and application of a new color map specific to STF'T phases, which avoids visual artifacts due to phase
wrapping, and matches visual differences to equal steps in the displayed value.

To extract yet more information from the STFT, Chapter 6 then delved into STFT derivatives as
a measure for their developments in time and frequency. Particularly for STFT phases, derivatives
reveal structures that are not easily visible in the STFT phases themselves. Finding harmonic and
periodic structures not only in STFT magnitudes, but also in its phase derivatives in fact opens a new
line of reasoning to this dissertation: STFT phases are often discarded by speech analysis algorithms
for being too hard to decipher. This also means that STFT phases are still comparatively unexplored,
and thus interesting as an area of research. This was made use of in the following part.

Taken together, the introduction of the phase-focused Hann-Poisson window in Chapter 5, the
dedicated color map for phase data in Chapter 5.3, and the STFT phase derivative in Chapter 6,
provide a base for analyzing STFT phases in a new level of fidelity.

This was put into use in Part III, which introduced a new fundamental frequency estimation
algorithm. Making use of both classical ideas such as a harmonic comb in the STFT magnitude, but
also our STF'T phase derivatives, the resulting algorithm proved both elegant and accurate. Its major
new insights are that phase information and magnitude information can complement one another to
correct their respective weaknesses, and that fundamental frequency estimation can be re-interpreted
as a per-frequency voice activity determination problem to improve accuracy in the face of ambiguous
estimates.

Exploring this solution exposed a problem with pitch estimation’s most common error metric,
the gross pitch error. Since the GPE is only applied to wvoiced frames, it is blind to some voicing
determination errors: The GPE ignores both unvoiced frames and frames unlabeled by the ground
truth, which essentially hides VAD false positives from evaluations. In real applications, however, such
false positives would be visible as estimation errors.

By re-framing the problem of fundamental frequency estimation as a time-frequency voicing activity
detection, our algorithm was able to all but avoid such false positives, albeit at the cost of somewhat
increased false negatives. However, this conflicts with the standard of today’s publications, which
define an accurate pitch estimation to have low GPE in reference to a known ground truth. Thus we
conclude that a better definition of pitch must include a definition of what pitch is not in order to be
useful for real-world applications.

Part IV therefore endeavored to find a new ground truth that is more reliable and applicable
than existing corpora. To date, there have been two sources of truth in pitch estimation corpora,
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laryngographs and PDAs. The former subscribes to a production theory of speech pitch, where the
true pitch of voiced speech is determined by the frequency of the vocal cord openings, as recorded
by a measurement device called a laryngograph. Ignoring the technical problems of the measuring
procedure, the speech production view defines pitches regardless of whether the speaker’s mouth is
opened or there is sufficient air flow to actually produce an audible sound. The alternative, basing the
ground truth on another PDA, is similarly flawed, as it necessarily biases the truth with the signal
model of the PDA. Additionally, even laryngograph recordings need to rely on a PDA to ascertain
their pitch, and are thus not free from this problem, either.

Chapter 9 analyzed the differences between existing speech corpora and their ground truths, and
ascertains how they might affect pitch estimation. Differences indeed proved significant, from varying
signal levels, to varying voice diversity and to mere differences in the amount of data included in the
corpora. None of the examined databases were found to be perfectly balanced or realistically diverse.
They are, however, widely cited, and used for comparisons between publications and algorithms.

On the matter of ground truths, Chapter 10 defined a new ground truth from the consensus of a
number of existing PDAs. Since all PDAs are based on reasonable theoretical concepts regarding signal
properties that result from a periodicity or harmonicity being present in the signal, their consensus
represents a kind of grand average of all these underlying concepts and ideas. While philosophically no
“truer” than any other source of truth, this procedure at least ensured that the new consensus truth is
categorically compatible with a PDA’s world view as a perceptive measure, and is in principle available
for arbitrary speech recordings without the need for specialized equipment such as a laryngograph.

Furthermore, a significant amount of differences was discovered between the consensus truth and
existing, laryngograph-derived ground truths. This included differences in fundamental frequencies as
well as differences in voicing activity, which showed the corpora’s ground truths diverging from the
majority of PDAs. Evaluating PDAs against the consensus truth therefore resulted in fewer errors,
and a more truthful assessment of PDA accuracy.

Thus, the search for the nature of pitch has found yet another answer: Pitch is what pitch esti-
mation algorithms estimate. A thoroughly tautological answer, of course, but perhaps philosophically
not too dissimilar from the original definition of “what humans perceive as pitch”. At least in the
context of evaluating the accuracy of new pitch estimation algorithms, this majority vote on pitch
is probably a reasonable solution, and allows for the analysis of speech corpora without an existing
fundamental frequency ground truth.

Part V applies this new ground truth in the form of a large comparison study of pitch determination
algorithms. The first part of this comparison, Chapter 11, assembled 25 PDAs from the entire history
of digital fundamental frequency estimation, and ascertained their changing conception of the nature of
pitch over the years. In general, earlier, computationally constrained approaches necessarily extracted
pitch from relatively simple structures, whereas later PDAs delved into ever-greater depths to describe
pitch and the human voice on a variety of levels.

It may not come as a surprise, then, that this diversity of opinions did not arrive at a common con-
sensus. In fact, our comparative literature review revealed dramatic differences in reported accuracy,
even if ostensibly identical corpora and algorithms were used in the publications. Pitch determination
is not yet an exact science, it seems. These differences, of course, also apply to our own consensus
truth, indicating that experimental parameters must have been so different between studies in the
literature, as to make them virtually useless for comparison.

Consequently, our comparison was explicitly laid open for other researchers to replicate and expand,
with complete definitions of all parameters and performance metrics, as well as reproducible open
source code and results. Chapter 12 presented the results of this comparison, which was unprecedented
in scope and detail. This included comparisons of the PDAs, the speech corpora, noise corpora, and
ground truths, among dimensions both traditional and novel.

The results of this comparison study yielded uniquely detailed information about the merits of var-
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ious algorithms. In this thorough evaluation, no single algorithm could be identified that performed
best across all conditions. Particularly the differences between speech corpora, noise files, voice fre-
quency, and voicing determination were greater than anticipated, which implies that different PDAs
are not so much “better” or “worse”, but are instead optimized for different applications.

Faced with this diversity, the consensus truth proved invaluable as an impartial basis for comparison
between the large range of algorithms and signal conditions. Each PDA was no doubt developed with
a particular application in mind, and a specific ground truth as a target. The consensus truth avoided
such pre-conceived biases for particular signals and thus formed a more neutral basis for evaluating
differential performances between the PDAs than any of the corpus ground truths.

Many of these varied analyses were the result of new performance metrics that expanded signifi-
cantly upon the common average gross and fine pitch errors. Average gross pitch errors were found
particularly problematic, as they do not show voicing determination errors, nor differences between
signal conditions. One of the most meaningful aspects of PDA performance was instead the notion
of a transition area, a particular SNR where the performance of a PDA starts to deteriorate, and
where PDA differences are most pronounced. Both its location and the PDA’s behavior at this SNR
provided good insight into the overall PDA characteristics.

The evaluation demonstrated that a standardized evaluation protocol and a large dataset can
indeed provide the detail necessary to evaluate PDAs for particular applications. However, this can
only be a first step towards reproducible research, with error measures in particular still in dire need
of revision. Regardless, with this framework in place, it is now possible to select a PDA that is most
fit for a particular task, if not “the best” overall.

In summary, there simply cannot be one complete definition of algorithmic pitch. Just as each
human’s perception of pitch is slightly different, so are there differences between algorithms. In fact, as
Chapter 2 illustrated, humans can be internally ambiguous about the pitch of single sounds, perceiving
it in a variety of ways depending on context, or simply by choice. This same dynamic seems to be
present in pitch determination algorithms designed for different applications. Thus, there can be no
one true pitch, but only a wvariety of pitches for different applications.



Chapter 14

Epilogue: Whither, Pitch Estimation?

Along the way in this investigation of pitch estimation, many a theory was put forth to make sense
of the jungle of definitions. I have consistently resisted the urge to classify approaches into simple
categories. The duality of pitch versus fundamental frequency comes to mind as the most prominent
one, which seemed clear-cut to me at the beginning, but truly lost all meaning by the end as the
concept of “that which is high or low” simply only exists as a human construct, regardless of whether
it is estimated by technology or biology.

Similarly, the differences between digital and analog algorithms, or harmonic and periodic inter-
pretations of signals, all too often fail to capture the essence of an algorithm’s design. In fact, even
comparing the resulting algorithms from starting points such as a statistical model, machine learning,
laryngograph ground truths, or simply the intuition of the individual engineer, all seem to converge
on a similar set of attributes that are more alike than different.

With the unprecedented depth of analysis in the comparison study at the end of this dissertation,
it became abundantly clear that the general problem of pitch estimation is in fact a solved one.
Minute differences in particular error measures can always be extracted. But does that truly make
an algorithm “better”? Only in reference to a ground truth can this question be answered, but this
changes the question from one about algorithms to one about truths, and we are none the wiser.

Perhaps it is not surprising that there are few secrets left in an area of research that has garnered
over eight hundred publications in the last thirty years.

Thus, if pitch estimation itself is no longer a fruitful topic of study, where does that leave this
dissertation? Over the course of my work on this topic, I have found the meta-analysis to be the most
interesting topic of all. Parts of this fascination have made it into the actual work in the form of the
exploration of STFT phases, and new error measures.

But there are several lines of research I have regrettably never found the time to work on: such
as the true meaning of STFT phases. Being that the instantaneous frequency and group delay are
derivatives, their zeros must correspond to extrema in the phase manifold. In fact, a simulated
hill shading based on the slopes defined by the phase derivatives gives the impression of a continuous
surface. It should thus be possible to utilize phase derivatives to completely unwrap the phase manifold,
and I would be terribly interested in the emergent shape, so long hidden in plain sight.

Similarly, the derivatives of the STFT magnitude are smooth slopes in the vicinity of dominant
transients such as clicks or sinusoids or sweeps (three expressions of the same phenomenon, really).
Much like phase derivatives can be used to reassign STF'T bins back to their source locations, so could
hill climbing be used to reattribute magnitude bins. In fact, the combination of these two methods
of reassignment should give a strong indication of whether an STFT bin belongs to a random noise
fluctuation or a meaningful and dominant voice partial.

These ideas are particularly interesting, as they view pitch not as a property of a single spectrum,
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but as a two-dimensional structure that spans both time and frequency. The possible movements
within this structure are limited by the mobility of the human vocal organs in specific, constrained
ways. | believe that if we had a more complete map of these states and their possible transitions, we
could constrain our speech analysis models to infer speech from much sparser data. In fact, most of
our own ability to detect speech in wildly adverse acoustic scenarios is probably based on our intimate
knowledge on the constrained possibility space of human voices.

However, these considerations are independent of the estimation of individual pitches. Ultimately,
I do not think that there is a holy grail of pitch estimation yet to be found. Pitch is merely a fantasy
that seems so close, yet never quite close enough to reach. But trying to reach that goal inevitably
leads one down the rabbit hole of the human voice and its infinite intricacies that is far more interesting
than pitch itself ever was. Or, in the words of Indiana Jones:

Henry: Elsa never really believed in the grail. She thought she’d found a prize.
Indy: And what did you find, Dad?

Henry: Me? Illumination!

—Indiana Jones [141]
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PDA Profiles

This Appendix includes a summary page for each PDA, with all the most important graphs on one
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Profile for BANA
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Profile for STRAIGHT
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MAPS

import scipy.signal

import numpy

from baseé4 import bé4decode

from scipy.interpolate import RectBivariateSpline

_basefrequencies=numpy.logspace (numpy.logl8(58), numpy.logl0(458), 208)

def

def

def

estimate_f@(blocks, basefrequencies=_basefrequencies):
"""A base frequency estimation in the magnitude and phase spectrum.

MaPS-f8@ uses a signal's magnitude STFT and it's IF deviation to
estimate the maximum-1likelihood base frequency of a tone complex
for a given series of base frequencies.

blocks: A SignalBlocks instance. Must use a samplerate of 48 RHz.
basefrequencies: an ordered vector of base frequencies in Hz.

Returns a vector of times, a vector of likely base frequencies,
and a vector of their likelihood.

mwmn

probability = pitch_probability(blocks, basefrequencies)
return max_track_viterbi(probability, blocks.hopsize/blocks.samplerate, basefrequencies)

pitch_probability(blocks, basefrequencies=_basefrequencies):

"""A probability-of-pitch estimation in the magnitude and phase spectrum.
MaPS-f8 uses a signal's magnitude STFT and it's IF deviation to

estimate the likelihood that a given range of base frequencies are

base frequencies of a tone complex.

blocks: A SignalBlocks instance.
basefrequencies: an ordered vector of base frequencies in Hz.

Returns a len(blocks) x len(basefrequencies) matrix of likelihood values.

nmn

mc = magnitude_correlation(blocks, basefrequencies)
ifdd = ifd_difference(blocks, basefrequencies)
return value2posterior(mc, ifdd)

max_track(probabilities, delta_t, basefrequencies=_basefrequencies):

211
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"""Extract frequency track from probabilities.

The frequency track is located at the maximum likelihood per time
frame.

probabilities: a time x frequency matrix of pitch probabilities.
delta_t: the time distance between two likelihood frames.
basefrequencies: The second axis of probabilities in Hz.

Returns the time of each frame, it's most likely frequency, and
the frequency's likelihood.

mwmn

time = numpy.arange(len(probabilities))*delta_t

freq = basefrequencies[numpy.argmax(probabilities, axis=1)]
prob = numpy.max(probabilities, axis=1)

return time, freq, prob

def max_track_viterbi(probabilities, delta_t, basefrequencies):
"""Extract frequency track from probabilities.

The frequency track is the track of maximum probability with a
minimum of frequency steps. Frequency steps are penalized
propertionally to the multiplicative step size.

probabilities: a time x frequency matrix of pitch probabilities.
frequency: The second axis of probabilities in Hz.

Returns each frame's most likely frequency, and the frequency's
probability.

wmn

time = numpy.arange(len(probabilities))*delta_t

# transition probability between two frequencies is the quotient
# between those frequencies, normalized to < 1.

transition = basefrequencies[:, None] / basefrequencies[None, :]
transition[transition>1] = 1/transition[transition>1]

# accumulate probabilities for each time step and select the

# highest cumulative probability path per basefrequencies and time:

cum_probability = probabilities.copy()

# save step that lead to this time/basefrequencies:

idx_probability = numpy.empty(probabilities.shape, dtype=int)

for idx in range(l, len(probabilities)):
step_probs = cum_probability[idx-1][:,None] * probabilities[idx][None,:] * transition
max_prob_idx = step_probs.argmax(axis=8)
idx_probability[idx] = max_prob_idx
cum_probability[idx] = step_probs[[max_prob_idx, numpy.arange(len(basefrequencies))]]
# normalize, so large products of small numbers don't end up zero
cum_probability[idx] /= cum_probability[idx].mean()

# walk backwards and select the path that lead to the maximum

# cumulative probability. For each step in the path, extract the
# basefrequencies and the local (non-cumulative) probability:
freq = numpy.empty(len(probabilities))

prob = numpy.empty(len(probabilities))

f_idx = numpy.argmax(cum_probability[-1])
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def

def

for t_idx in reversed(range(len(probabilities))):
freq[t_idx] = basefrequencies[f_idx]
prob[t_idx] = probabilities[t_idx, f_idx]
f_idx = idx_probability[t_idx, f_idx]

return time, freq, prob

magnitude_correlation(blocks, basefrequencies=_basefrequencies):
"""Correlate synthetic tone complex spectra with a true spectrum.

Generate spectra at a number of given base frequencies, then
correlate each of these spectra with the magnitude signal
STFT-spectra.

Before correlation, each frequency bin is log-weighted to make the
correlation perceptually accurate.

blocks: A SignalBlocks instance.
basefrequencies: An ordered list of base frequencies in Hz.

Returns a len(blocks) x len(basefrequencies) matrix of correlation values.

wmn

specsize = blocks.blocksize//2+1

# weigh differences according to perception:
f = numpy.linspace(®, blocks.samplerate/2, specsize)
log_f_weight = 1 / (blocks.samplerate/2)**(f / (blocks.samplerate/2))

correlation = numpy.zeros([len(blocks), len(basefrequencies)])
synthetic_magnitudes = synthetic_magnitude(blocks.samplerate, specsize, basefrequencies)

for idx, spectrum in enumerate(stft(blocks)):
# the correlation for real signals does not require the conj():
correlation[idx] = numpy.sum(numpy.abs(spectrum) *
synthetic_magnitudes *
log_f_weight, axis=1)

return correlation

stft(blocks, *, nfft=None, windowfunc=scipy.signal.hann):
"""Short-time Fourier Iransform of a signal.

The signal is cut into short overlapping blocks, and each block is
transformed into the frequency domain using the FFT. Before
transformation, each block is windowed by windowfunc.

blocks: A SignalBlocks instance.
nfft: None for blocksize, or a number.
windowfunc: A function that returns a window.

Returns a complex spectrum.

mwmn

window = windowfunc(blocks.blocksize)
nfft = nfft or blocks.blocksize
specsize = nfft//2+1

for idx, block in enumerate(blocks):
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yield numpy.fft.rfft(block*window, nfft)

def synthetic_magnitude (samplerate, specsize, basefrequencies=_basefrequencies):
"""Synthetic magnitude spectra of a range of tone complexes.

samplerate: The sampling rate of the tone complexes.

specsize: The length of each spectrum.

basefrequencies: An ordered vector of tone complex base
frequencies in Hz.

Returns a len(basefrequencies) x specsize matrix of tone complex spectra.

mwmn

freqs = numpy.linspace(®, samplerate/2, specsize)
synthetic_spectra = numpy.empty((len(basefrequencies), specsize), numpy.floaté4)
for idx, basefrequency in enumerate(basefrequencies):

synthetic_spectralidx, :] = hannwin_comb(samplerate, basefrequency, specsize)
return synthetic_spectra

def hannwin_comb(samplerate, basefreq, specsize):
"""Approximate a speech-like correlation spectrum of a tone complex.

This is an approximation of time_domain_comb that runs much
faster.

Instead of calculating the FFT of a series of hann-windowed
sinuses, this models the spectrum of a tone-complex as a series of
hann-window-spectrums.

For a perfect reconstruction, this would need to calculate the sum
of many hann-window-spectra. Since hann window spectra are very
narrow, this assumes that each window spectrum extends from
n*basefreq-basefreq/2 to n*basefreq+basefreq/2 and that
neighboring spectra do not influence each other.

This assumtion holds as long as basefreq >> 1/specsize.
Amplitudes are normalized by specsize.

To make the spectrum more speech-like, frequencies above 1868 Hz
are attenuated by 24 dB/oct.

To make the correlation of this spectrum and some other spectrum
have a normalized gain, the spectrum is shifted to be zero-mean.

samplerate: The sampling rate in Hz of the signal.

basefreq: The base frequency in Hz of the tone complex.

specsize: The length of the resulting spectrum in bins
(typically 2**N+1 for type(N) == int).

Returns a real magnitude spectrum.

mwmn

freqs = numpy.linspace(®, samplerate/2, specsize)

# create a local frequency vector around each harmonic, going from
# -basefreq/2 to basefreq/2 within the area around the nth

# harmonic n*basefreq-basefreq/2 to n*basefreq+basefreq/2:
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def

closest_harmonic = (freqs + basefreq/2) // basefreq

# ignore first half-wave:

closest_harmonic[closest_harmonic==8] = 1

local_frequency = closest_harmonic*basefreq - freqs

# convert from absolute frequency to angular frequency:
local_angular_freq = local_frequency/(samplerate/2)*2*numpy.pi

# evaluate hannwin_spectrum at the local frequency vector:

comb_spectrum = numpy.abs(hannwin_spectrum(local_angular_freq, specsize))
# normalize to zero mean:

comb_spectrum -= numpy.mean(comb_spectrum)

# attenuate high frequencies:

comb_spectrum[ freqs>108608] /= 10**(numpy.log2(freqs[freqs>10680]/10808)*24/26)
return comb_spectrum

hannwin_spectrum(angular_freq, specsize):
"tSpectrum of a hann window

The hann window is a linear combination of modulated rectangular
windows r(n) = 1 for n=[8, N-1]:

w(n) = 1/2*(1 - cos((2*pi*n)/(N-1)))
= 1/2*r(n) - 1/4%exp(i*2*pi * n/(N-1))*r(n) - 1/4%exp(-1*2*pt * n/(N-1))*r(n)

It's spectrum is then

W(omega) = 1/2*R(omega) - 1/4*R(omega + (2*pi)/(N-1)) - 1/4*R(omega - (2*pi/(N-1)))
with the spectrum of the rectangular window

R(omega) = exp(-i*omega * (N-1)/2) * sin(N*omega/2) / sin(omega/2)

(Source: https://en.wikipedia.org/wiki/Hann_function)

angular_freq: Angular Frequency omega (8...2*pi), may be a vector.
specsize: Length N of the resulting spectrum

Returns the spectral magnitude for angular_freq.

mwmn

def rectwin_spectrum(angular_freq):

# In case of angular_freq == 8, this will calculate NaN. This

# will be corrected later.

spectrum = ( numpy.exp(-1j*angular_freq*(specsize-1)/2) *
numpy.sin(specsize*angular_freq/2) /
numpy.sin(angular_freq/2) )

# since sin(x) == x for small x, the above expression

# evaluates to specsize for angular_freq ==

spectrum[angular_freq == 0.0] = specsize

return spectrum

angular_freq = numpy.asarray(angular_freq, dtype='floaté64')
delta_f = 2*numpy.pi / (specsize-1)
# don't warn about division by zero, NaNs will be corrected.
with numpy.errstate(invalid="'ignore'):
return (1/2 * rectwin_spectrum(angular_freq) -
1/4 * rectwin_spectrum(angular_freq + delta_f) -
1/4 * rectwin_spectrum(angular_freq - delta_f)) / specsize
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ifd_difference(blocks, basefrequencies=_basefrequencies):
"""Compare generated IF deviations with true IF deviation.

Generate IF deviations at given base frequencies, then subtract
these from the true IF deviation of each block. The minimum
difference marks the base frequency of the block.

Each difference is log-weighted along the frequency to account for
human perception, and bias-corrected along the base frequency to
compensate for higher variances at higher base frequencies.

blocks: A SignalBlocks instance.
basefrequencies: an ordered vector of base frequencies in Hz.

Returns a len(blocks) x len(basefrequencies) matrix of difference values.

win

specsize = blocks.blocksize//2+1
synthetic_ifds = synthetic_ifd(blocks.samplerate, specsize, basefrequencies)

# weigh differences according to perception:

f = numpy.linspace(®, blocks.samplerate/2, specsize)

log_f_weight = 1 / (blocks.samplerate/2)**(f / (blocks.samplerate/2))
speech_weight = numpy.ones(f.shape)

max_f0 = basefrequencies[-1]
ifds = ifd(blocks, max_fB=max_f0)

# larger base frequencies lead to larger IFDs:

difference_bias = numpy.nanmean(numpy.abs(synthetic_ifds), axis=1)
# larger signal variability leads to larger IFDs:

signal_bias = numpy.nanmean(numpy.abs(ifds), axis=1)

difference = numpy.zeros([len(blocks), len(basefrequencies)])
for idx, this_ifd in enumerate(ifds):
# the difference between the synthetic baseband instantaneous
# frequency and the actual baseband instantaneous frequency
# is minimal at the probable f8.
difference_matrix = synthetic_ifds - this_ifd
bias = numpy.sqrt(difference_bias**2 + signal_bias[idx]**2)
# scale frequencies logarithmically, and correct for bias:
difference[idx] = numpy.nanmean(numpy.abs(difference_matrix) *
log_f_weight *
speech_weight, axis=1) / bias

return difference

ifd(blocks, *, max_f0=4508):
"""Instantaneous Frequency Deviation of a signal.

Each time-frequency bin in the IFD has as value the difference
between the bin's frequency and the most prominent frequency track
in the bin's vicinity. As an example, if there is a prominent
frequency track 168 Hz above a bin, it's value will be 168. If a
bin is situated right on top of a frequency track, it's value will
be 8. If it is above a frequency track, it's value is negative.
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This is equivalent to the frequency differentiation of a
baseband -transformed STFT spectrum; aka BPD in [1].

[1]: Krawczyk, M.; Gerkmann, T., "STFT Phase Reconstruction in
Voiced Speech for an Improved Single-Channel Speech
Enhancement ," in Audio, Speech, and Language Processing,
IEEE/ACM Transactions on , vol.22, no.12, pp.1931-1946, Dec.
2014 doi: 18.1189/TASLP.2814.2354236

The signal is cut into overlapping blocks. Each block 1is
differentiated by splitting it in two strongly-overlapping
sub-blocks, each sub-block is Fourier-transformed, the phase
spectra are calculated, and the difference between the
sub-blocks-spectra is calculated, and converted to frequencies.

The frequencies thus obtained fall into a narrow range that is
limited by the sub-block overlap. The maximum visible difference
is given by max_f8@, and governs the sub-block overlap. Lower
max_f@ decrease the sub-block overlap, and wrap IFD frequencies at
max_f8/2.

blocks: A SignalBlocks instance.
max_f@: The max frequency distance visible in the IFD.

Returns a len(blocks) x blocks.samplerate//2+1 matrix of IFD values.

mwin

specsize = blocks.blocksize//2+1

# number of samples that each sub-block-pair overlaps:

dt = int(blocks.samplerate//max_£8)

# a time window for each sub-block that maximizes phase accuracy:
window = hannpoisson(blocks.blocksize, sym=False)

longer_blocks = SignalBlocks(blocks.data, blocks.samplerate,
blocks.blocksize+dt, blocks.hopsize)

instfreq = numpy.zeros([len(longer_blocks), specsize], dtype='complex')

for idx, block in enumerate(longer_blocks):
# differentiate the spectrum phase in the time direction:
# split the block in two strongly-overlapping blocks, then calculate the
# angle difference (aka instantaneous frequency).
spectruml = numpy.fft.rfft(window*block[:-dt], n=blocks.blocksize)
spectrum2 = numpy.fft.rfft(window*block[dt:], n=blocks.blocksize)
instfreq[idx] = spectrum2 * spectruml.conj()

# pure sinusoids change phase by this much in the given overlap time:
baseband_phase_change = numpy.exp(1j * numpy.linspace(@, numpy.pi, specsize) * dt)
# calculate the baseband phase difference / instantaneous frequency deviation:
instfreq_deviation = numpy.angle(instfreq * baseband_phase_change.conj())
instfreq_deviation *= max_f8/2 / numpy.pi # display as frequencies

return instfreq_deviation

hannpoisson(length, *, alpha=2, sym=True):

"""A window function with no side lobes.

The Hann-Poisson window is a Hann Window times a Poisson window.

It has the unusual feature of having "no side lobes" in the sense
that, for alpha >= 2, the window-transform magnitude has negative
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def

slope for all positive frequencies [1][2].

[1]:
http://www.dsprelated.com/freebooks/sasp/Hann_Poisson_Window.html

[2]: eq5.24 on pl154 in Window Functions and Their Applications in
Signal Processing by K. M. M. Prabhu, CRC Press)

length: The length of the window.
alpha: A slope constant (smooth slope for alpha >= 2)

Returns the window array.

mwmn

if not sym:

length += 1
normalization = (length-1) / 2
n = numpy.arange (-normalization, normalization+1)
poisson = numpy.exp(-alpha*numpy.abs(n) / normalization)
hann = 1/2 * (1+numpy.cos(numpy.pi*n / normalization))
if sym:

return poisson * hann
else:

return (poisson * hann)[:-1]

synthetic_ifd(samplerate, specsize, basefrequencies=_basefrequencies):
"""Synthetic instfreq deviations of a range of tone complexes.

samplerate: The sampling rate of the tone complexes.

specsize: The length of each IFD.

basefrequencies: An ordered vector of tone complex base
frequencies in Hz.

Returns a len(basefrequencies) x specsize matrix of IFDs.

mwmn

max_f@ = basefrequencies[-1]
synthetic_ifds = numpy.zeros((len(basefrequencies), specsize), numpy.floaté4)
f = numpy.linspace (@, samplerate/2, specsize)
for idx, basefrequency in enumerate(basefrequencies):
# the baseband_instreq shows the frequency difference to the closest
# dominant harmonic:
closest_harmonic = (f + basefrequency/2) // basefrequency
instfreq = closest_harmonic*basefrequency - f
# since it is derived from the phase, it wraps:
instfreq = wrap_angles(instfreq, max_f8/2, inplace=True)
instfreq[f < basefrequency/2] = 0
synthetic_ifds[idx] = instfreq

return synthetic_ifds

wrap_angles(angles, limit, *, inplace=False):

"""something like modulo, but wraps n z limit to n # 2*limit.
Useful for confining angular values to a wrapping data range.

angles: Some real values.
limit: The maximum/minimum valid value.

SOURCE CODE
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inplace: Whether to overwrite values in angles (faster).

Returns wrapped angles.

wmn

angles = numpy.array(angles, copy=not inplace)

too_big = angles > limit

angles[too_big] -= numpy.ceil((angles[too_big]-limit)/(2*1limit))*2*1imit
too_small = angles < -limit

angles[too_small] -= numpy.floor((angles[too_small]+1limit)/(2*1imit))*2*1imit
return angles

class SignalBlocks:
"""A generator for short, overlapping signal blocks.

Each SignalBlocks instance contains the signal ‘data’ and its
‘samplerate . It generates short, possibly overlapping signal
blocks of length ‘blocksize'. Each block starts ‘hopsize' after
the previous block.

The SignalBlocks' ‘len‘ 1is its number of blocks, and its
‘duration’ is the signal length in seconds.

nwmn

def __init__(self, data, samplerate, blocksize=20848, hopsize=1824):
self.data = data
self.samplerate = int(samplerate)
self.blocksize = int(blocksize)
self .hopsize = int(hopsize)

def __iter__(self):
idx = 8
while idx+self.blocksize < len(self.data):
yield(self.data[idx:idx+self.blocksize])
idx += self.hopsize

def __len__(self):
return int(numpy.ceil( (len(self.data)-self.blocksize) / self.hopsize ))

@property
def duration(self):
return len(self.data)/self.samplerate

_magnitude_correlation = numpy.frombuffer (bbé4decode(
b'mGrQJey9QMCe /0Lab69g3wBtUytH+ayzA81Ed3ktMESBQBFrnZT8UQEqtaNaLZS1ANyySXLJVOEDk '
b'APhmT /xAQKzrpp/FzUVAANZV2DufSkA9wQQRsnBPQAPW2SQUIVJIAZOsxQc+JVEDMwIhdivJWQDA2'
b'4H1FW11A1Ks31gDEWOD4II+yuyxeQC5Lc2e7SmBA4AWEf9Rh/YUCSwMgDdrNiQA=="
), dtype='double')

_ifd_difference = numpy.frombuffer(bé4decode (
b'QM+ExWYxsj9WRR487e0yP2y7t7Jz1rM/gTFRKEpItD +Wp+qfgPudPéwdhBYHrrU/wZMdjVigt] /W'
b'ChcDFBO3P+x/UHgaxbc/Avbp8CB4uD8XbINnpyq5PyziHN4t3bk /Qli2VLSPuj9Xzk/LOkK7P2xE "
b'6UHB9Ls/grqCuEenvD+XMBwvzIlm9P62mtaVUDL4 /whxPHNu+vj/XkuiSYXG/Pw=="

), dtype='double')

_posterior = numpy.frombuffer(bé4decode (
b'FAvfatwgsj+6t4fUvlawPzCfCvN3Mas/KLtCfM76pD92zS40bSPmbP5IFkiZpzo4/BomuaVYtqfD86 !
b'BdREYEIMP8tCzWxIulA/zjotfjR2QT890M4nQVg+P6JaRjc400A/0q/XmvalQT8b+sytyclCP/z3"
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b'FqV6+EM/eqPghJ5hRD8OTYUTNS1EP /LKwhzy90M/ TnYNKhRyQz+Pcne44T1CP+yWorIkD7A/cGBM'
b'rDFcrT8QjswRE920PxCxdoBeMaM/KARH6DhImT8uDmF 1D jmMP32GGH63TXo /pj2yJW/0ZD+q/PT8"
b'kitPP/iBYIoNOkA/02hCRdghPD+EGiKIaSg+P5cMtd+tTEA/TFGBINIHQT+QF4PS0xZCP3bT1HBg"'
b'dkI/Y1vTsad6Qj+cx1tSY11CP6UrchjeqEE/pL6/hZ1uQD/MxcByV52tP94d9TS6sqo/W7£TTj1U"
b'pj+eVBTCCCShP+Z0f0KV7pY/0k20/B/IiT9iKXgBgVx4P/jpwDYA1GM/3KHHceL3TT+DkEXkXbU/ "
b'P7hCRDQ5Wzs/tmiLV1wBPT9wIYgcPBM/P/jD1lc6oPkA/ukLRGpy/QD+dXIP9cA1BP4BPSITSGEE/ "
b'a8q705ftQD/jektu+UFAPzL7pKLQnT4/UM1g2evCuT9gbMhjaQK3P4qHixXe4LI/UgpxGruorD9i '
b'mvHROBK jP5MBf3mu75U/06ukK6kP7hDIF5CYBdh9xP3ia9H+LFVs//CO1P3JrTT98jx86NyRIP1ICW '
b'twsuCEo/JL7i2GZdSz90QDeDiRhMPwpngnaobkw/xRv410d7TD+QroCy7EJMP2ryWaP5rEs/fP/K'
b'wSt/Sj/a97CXYjxJP971ghvX39M/ qsNy4wnPBT8sMXxhQzjNPyJhtqNvC8Y/E9ZxtDR3vIIw06Vi "
b'D8iwP95ppFmUC6A/uHGoaEcYij8bQzvzBqtOP1D9qcpTfGY/uqRUZgINYZ9WRqZs /IVjPBSdemZw '
b'a2Q/0gTNp3r8ZD843ytYES91PBowKXorMGU /BM/eTyX+ZD/K8uJnloVkP6LBveWBn2M/3h1sRf0r "
b'Yj+iYgdleh7qPwIA+076P+c/tA4Z9Ev+4 j8Yp4P6NWDCcP5tfidjLXNI/trzXPshRxT+y4KsEIIm@ '
b'P9Q9MgNyfqA/UvNmR541ij/yt30VPCV8PwT9PcqvvHe /CkVZezBCeD/dG7YNIWREP26cY8i1P30/ "
b'IN/gDuTKej/UrtROGhR7P/ah3GIU630/+jCKZ1w4ej9a35Pd1A15Pywc3Qws5He /VorT2A6P+T+1"
b'8E/NBY/2P9ueKjokcPI/J1xeATKQb6z/I9H8RHSLiP4ZTP7mBitQ/jHRiBMiZwz+sh23mM7yvPx3f "'
b'Q1rd85g/cEEexpe9ij9GxwE2x00GP7ahBsXsCYc/b7¢SG3IniD/Zujo/BCOJPwEZrv0iSok /vNFP'
b'84Juij+jSjpUmmOKP1FJaXjFrYk/Kv86FmKNiD/WwDNWyH+HP8nmHMCeUARAdJBdqSWtAUACK8GO "
b'MfT8P5BVYmE9eDPY/+v7bA2cn7T/tWMDA12TgP+YPRh7eMM8 /VBHF q2I19uT9aNmtK+sKjP6gPVKVK'
b'BpU/wNIzBsu8kT8czwluuzuSPOCCkM61MpM/SC5U;ZMV1D8IP84QjMCUPWEMOmjmMJIU/h1qBFmQ6
b'1T+g2AmmQL2UP7Kx1L+95ZM/22zJf91Uukz9SRon7gqgNQEfapATtDQ1AqZVcC7tHBEAUU4/g71z/"
b'PyLex1Z26fQ/bB3nK78n5z9VkdzsEObVP8QNnJIYsvME /YYqoz5mxqz9AD7ZNcE6dPybnhmIuypg/ '
b'2GvBZ7KymT+LKRIeSUabP1gpBicNqJw/2jGetjSgnT8I1AgIPhgePwivbuxrFJ4/XBazXNlsnT+f'
b'lek73EWcPygYaNpvWJs/LKSfrNKeEBBKOZw9QXkQQJInléaCEqgpAzo81+yPCBEDSES0HjJr7PzJH!
b'791Ek04/mgH3wJzi3D8BgspRp3PHP3aRKgdLLbI/Sn/hDG4Aoz/xR3pVRQugPBKEiiYHx6A /5aHm'
b'MF790T9fxQ6wdwijP/bh/NOlvaM/AtQ+J3/zoz+oWistMcujPzNayU71YéM/izTahXivoj/+orur'
b'buéhP6RLib4uDRAAMDON6Q1kFEB+6LFjYgIRQDnd4X7SeApAxAfSNQm+AUCWEF1YyMbzP6Q6nNVX "
b'pul/DqcWaplrzj8YK8hdlwG3PwBhXtuZkéc/XuYYZeHHoz /MSewtfMWkP1+BJIW1kiKY/wDwgezAa'
b'qD/+T49tBhipPBxZgYgUVak/9gtDKUQSqT9uR8k78qyoP1bY2E1g9qc/x9dbPyjmpj8Y4PJpnBsa'
b'QPmBx+QH7hhA1q5zT6WSFUAeFBI1X5YQQGpjITFgdAZA /uubs0dc+T8QtHTpKXvnP /hdapl6hdI/"
b'vré61xNXWuz8YD2iLcBysP2npu+5Fpqgc/4titT7DigD+iXefg3yqrPBEiz1QEMgB/ugPQQNeFrj9g"
b'a7QisASvP3x7eyow4q4/LCLR29GQrj/+k7NRRvatPyL4vQ3786w/nvlc4IiwGOBv/nX6Z1kcQCT4"
b'0C407B1A1fyS8GtKFEBmgOtXLOELQLEC1qeBq/8/pYqQRBSD7D9yccUiyaDVP1RmBXEHECA/Tgn3"
b'0HeFsD992VDk18mrP57dz2nqT68/7EoCrwHgrz+RRTEMCw2xPx5VEX3N17E /zmvVSdxLsj9QgToX"
b'uGOyP/I33nfdS7I/UCVTfxoUsj8ULk11GcSxPxCogC4xsxxAmjbKIrlcHkA8YTkqNkgdQOWobM2W '
b'ChhAuiyIGJ7JEEAESL14TfkCQFB/3Kjk2vA/8NU9qxzy2D9cmuzlwSPCP23t1g9EsrI/SP/uGe+"
b'rz8EnEulf8+wP4AnvKzwPbI/hd/tnAlesz+Whewxn@00BPwQguLUH/rQ/sH1XCelQtT8NsxZALzul"'
b'P7YomyaD6bQ/W19cdryWtD8arxwpwlQfQGZsnVaE1CBAZxLm2+66 IECOxtBweWccQGA1ksFqrBNA'
b'qjfBGN+6BUDtH2jsB1bzP8r9Pqqno9w/on5LXtd1xD9zHDZz6PqSOP72z001aJ1LE/QuuT9ruysj+t'
b'rVbQABWBP+TYwcRHA7U/oské6yhuGtjowZsmA2503PxYDxHsTRby/xAG18jF3uD+IDP3i0P63P7LM"
b'72CLNrc/8bGoqwSmIEBZKmwME +giQJJGBgx jPiNALrpTYnCDIEC80oulkBFsWQLtX2BIovwdAOMQK '
b'Tjj79D9xUwBa+WLEfPzQiE2L1YsY/81qN89ultj94iqg4iDGzP654A3HXdLY/xXpfd3wztj9ldlel"
b'w323P8Q7ykyTvbg/bQtjVgHSuT9GBtZijQq7P348VzKrDrw/juyd9d/2uz/+rqayrOW6PxoqIMh4 "’
b'8iJAiMhHxw45JUAwubZgchM1QG18idYAZSFA7qOP3AEMGEBneUjtfGgJQLjb72zb+IPY/BEwbo0dc '
b'4D/YiM77w6PHPwXSUPgSarg/LoDjuW7StD8ErHYgYwy2P486PProD7g/kMqCjT2duT9DXk/ j8vub '
b'P2B+PmOkHrw/KrXLmWKXvT/uN8o6+NC/P2B2tpSwh8A /E6hHWe5TwD+ks881EFQmQIwtoexmDihA "
b'ekpW8XumJkACHIRGvVioiQF5PGPqF1BhAeEPZzC0eQCODOKHNTx1z4P1Qu+2z1GXuE /40ztxQzTyD9u'
b'D+v7UxC6P+X6hqgyc7Y/rjKiF66qtz/nXAPRRt+5PxzyUekLtLs/tvRW+xsavT+XXjpCqDy+P1Ss"'
b 'RbmAN8A/pPumBf2jwT+Km8SbbkTCP6x1g356gsI//XZXbSPFKkDkfm2dqrkrQByPRPenPihAx/qc'
b'op2YIUCox6GHY +8XQMAJz0o0CkgxA5i6KkJEj+j/ycB3/tNviP/ZpefEJk8o/KvB6pvCauz+yFlov'
b'jge4PyaphgqBulk /wG3KqGMWvD+8vRKD0o6i9P3hgJOx+xL4/1t/8LNcqwD8WqAUWxdzBP7LYiHxs "'
b'JcM/VKMAp83Nwj+68dVWpnDCP5Rhe jaQqDBApFWXOEWHMECsmG48xj4rQHDDR7P45yFABImUG9aQ !
b'FOCpz0YzH18NQA6RgStXgPs/eMUCr+0B5D8qLgyf1zfMP8iIzNv9 /7w /O0HNobvskuT/yeh/nnYK7'
b'P2E310u3N74 /HPP3086pvz/evsf1CJi/P4ml5gnblcA/oxwI+UtFwz+5hNDy43rEP77MvtLKASM/ "
b'RIpAgj24uT8="

), dtype='double').reshape((28, 20))

SOURCE CODE

value2posterior = RectBivariateSpline(_magnitude_correlation, _ifd_difference, _posterior).ev
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AMDF

import numpy

# Ross et al., 1974
def amdf(signal, samplerate):
delays = range(samplerate//458, samplerate//50)
blocklen = int(8.836*samplerate)
hoplen = int(0.81*samplerate)
result = []
for blockidx in range(delays[-1], len(signal)-blocklen, hoplen):
diff = numpy.zeros(len(delays))
for delayidx, delay in enumerate(delays):
diff[delayidx] = 1/blocklen * numpy.sum(
numpy . abs (signal[blockidx :blockidx+blocklen] -
signal[blockidx-delay:blockidx+blocklen-delay]))
result.append(samplerate/delays[numpy.argmin(diff)])
return (numpy.arange(len(result))*hoplen/samplerate, # time
numpy . array (result), # frequency
numpy .ones (len(result))) # probability

CEP

import numpy
import scipy.signal

# Noll, 1967
def cep(signal, samplerate):

# low-pass filter to 4 RHz (filter type is unspecified)

coeffs = scipy.signal.butter (4, 4080/(samplerate/2))

signal = scipy.signal.lfilter(*coeffs, signal)

blocklen = int(0.040*samplerate) # 48 ms

hoplen = int(0.016*samplerate) # 18 ms

window = scipy.signal.hamming(blocklen)

# search range between 1 ms ... 15 ms

one_ms = int(blocklen/2 * ©.081/0.848) # in quefrency bins

fifteen_ms = int(blocklen/2 * ©8.815/8.048) # in quefrency bins

# weighed with 1 to 5 from 1 to 15 ms

weight = numpy.linspace(l, 5, fifteen_ms-one_ms)

result = []

for blockidx in range(8, len(signal)-blocklen, hoplen):
block = signal[blockidx:blockidx+blocklen]
cepstrum = numpy.fft.rfft(numpy.log(abs(numpy.fft.fft(window*block))**2))
region_of_interest = numpy.real(cepstrum[one_ms:fifteen_ms]) # this is already approximately real
region_of_interest *= weight
result.append(numpy.argmax(region_of_interest) /

blocklen * 0.848 + 0.001) # convert to s
return (numpy.arange(len(result))*hoplen/samplerate, # time
1/numpy.array(result), # frequency
numpy .ones (len(result))) # probability

AUTOC

import numpy
import scipy.signal

# Sondhi, 1968
def autoc(signal, samplerate):
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signal = signal.copy()

# center clipping:
blocklen = int(0.885*samplerate)
for blockidx in range(8, len(signal)-blocklen, blocklen):
block = signal[blockidx:blockidx+blocklen]
threshold = 0.3*numpy.max (numpy.abs(block))
# these modify signal:
block[numpy.abs(block) < threshold] = 8
block[block != @8] -= threshold * numpy.sign(block[block != 8])

# autocorrelation up to 15 ms:

blocklen = int(0.8308*samplerate)

hoplen = int(0.010*samplerate)

window = scipy.signal.hamming(blocklen)

fifteen_ms = int(blocklen * 0.015/8.838)

weight = numpy.linspace(1l, 5, fifteen_ms) # unspecified in the paper

result ]

for blockidx in range (8, len(signal)-blocklen, hoplen):
block = signal[blockidx:blockidx+blocklen]*window
autocorrelation = numpy.correlate(block, block, 'full')[-blocklen:]
region_of_interest = numpy.abs(autocorrelation[:fifteen_ms])
argmax = numpy.argmax(region_of_interest*weight)

result.append(samplerate/argmax if argmax != 8 else 0)
return (numpy.arange(len(result))*hoplen/samplerate, # time
numpy . array (result), # frequency
numpy.ones (len(result))) # probability

SIFT

import numpy
import scipy.signal

# Markel, 1972
def sift(signal, samplerate):
order = 16
blocklen = int(8.832*samplerate)
two_ms = int(blocklen * 08.802/8.832)
result = []
for blockidx in range(8, len(signal)-blocklen, blocklen):
block = signal[blockidx:blockidx+blocklen]
autocorrelation = numpy.correlate(block, block, 'full')
autocorrelation = autocorrelation[len(autocorrelation)//2:]
toeplitz = scipy.linalg.toeplitz(autocorrelation[:order-2])
coeffs = numpy.linalg.inv(toeplitz) @ -autocorrelation[1:order-1]
filtered = scipy.signal.lfilter([1, *coeffs], [1], block)
autocorrelation = numpy.correlate(filtered, filtered, 'full')
autocorrelation = autocorrelation[len(autocorrelation)//2:]
argmax = numpy.argmax(autocorrelation[two_ms:]) + two_ms
result.append(samplerate/argmax)

return (numpy.arange(len(result))*blocklen/samplerate, # time
numpy . array (result), # frequency
numpy .ones (len(result))) # probability
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